Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mhairi C. Towler is active.

Publication


Featured researches published by Mhairi C. Towler.


Circulation Research | 2007

AMP-Activated Protein Kinase in Metabolic Control and Insulin Signaling

Mhairi C. Towler; D. Grahame Hardie

The AMP-activated protein kinase (AMPK) system acts as a sensor of cellular energy status that is conserved in all eukaryotic cells. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Activation in response to increases in AMP involves phosphorylation by an upstream kinase, the tumor suppressor LKB1. In certain cells (eg, neurones, endothelial cells, and lymphocytes), AMPK can also be activated by a Ca2+-dependent and AMP-independent process involving phosphorylation by an alternate upstream kinase, CaMKK&bgr;. Once activated, AMPK switches on catabolic pathways that generate ATP, while switching off ATP-consuming processes such as biosynthesis and cell growth and proliferation. The AMPK complex contains 3 subunits, with the &agr; subunit being catalytic, the &bgr; subunit containing a glycogen-sensing domain, and the &ggr; subunits containing 2 regulatory sites that bind the activating and inhibitory nucleotides AMP and ATP. Although it may have evolved to respond to metabolic stress at the cellular level, hormones and cytokines such as insulin, leptin, and adiponectin can interact with the system, and it now appears to play a key role in maintaining energy balance at the whole body level. The AMPK system may be partly responsible for the health benefits of exercise and is the target for the antidiabetic drug metformin. It is a key player in the development of new treatments for obesity, type 2 diabetes, and the metabolic syndrome.


Cell Metabolism | 2010

Use of Cells Expressing γ Subunit Variants to Identify Diverse Mechanisms of AMPK Activation

Simon A. Hawley; Fiona A. Ross; Cyrille Chevtzoff; Kevin A. Green; Ashleigh Evans; Sarah Fogarty; Mhairi C. Towler; Laura J. Brown; Oluseye A. Ogunbayo; A. Mark Evans; D. Grahame Hardie

Summary A wide variety of agents activate AMPK, but in many cases the mechanisms remain unclear. We generated isogenic cell lines stably expressing AMPK complexes containing AMP-sensitive (wild-type, WT) or AMP-insensitive (R531G) γ2 variants. Mitochondrial poisons such as oligomycin and dinitrophenol only activated AMPK in WT cells, as did AICAR, 2-deoxyglucose, hydrogen peroxide, metformin, phenformin, galegine, troglitazone, phenobarbital, resveratrol, and berberine. Excluding AICAR, all of these also inhibited cellular energy metabolism, shown by increases in ADP:ATP ratio and/or by decreases in cellular oxygen uptake measured using an extracellular flux analyzer. By contrast, A769662, the Ca2+ ionophore, A23187, osmotic stress, and quercetin activated both variants to varying extents. A23187 and osmotic stress also increased cytoplasmic Ca2+, and their effects were inhibited by STO609, a CaMKK inhibitor. Our approaches distinguish at least six different mechanisms for AMPK activation and confirm that the widely used antidiabetic drug metformin activates AMPK by inhibiting mitochondrial respiration.


The EMBO Journal | 2001

A novel clathrin homolog that co‐distributes with cytoskeletal components functions in the trans‐Golgi network

Shu-Hui Liu; Mhairi C. Towler; Ernest Chen; Chih-Ying Chen; Wenxia Song; Gerard Apodaca; Frances M. Brodsky

A clathrin homolog encoded on human chromosome 22 (CHC22) displays distinct biochemistry, distribution and function compared with conventional clathrin heavy chain (CHC17), encoded on chromosome 17. CHC22 protein is upregulated during myoblast differentiation into myotubes and is expressed at high levels in muscle and at low levels in non‐muscle cells, relative to CHC17. The trimeric CHC22 protein does not interact with clathrin heavy chain subunits nor bind significantly to clathrin light chains. CHC22 associates with the AP1 and AP3 adaptor complexes but not with AP2. In non‐muscle cells, CHC22 localizes to perinuclear vesicular structures, the majority of which are not clathrin coated. Treatments that disrupt the actin–myosin cytoskeleton or affect sorting in the trans‐Golgi network (TGN) cause CHC22 redistribution. Overexpression of a subdomain of CHC22 induces altered distribution of TGN markers. Together these results implicate CHC22 in TGN membrane traffic involving the cytoskeleton.


Traffic | 2004

Membrane Traffic in Skeletal Muscle

Mhairi C. Towler; Stephen J. Kaufman; Frances M. Brodsky

Skeletal muscle tissue is made up of highly organized multinuclear cells. The internal organization of the muscle cell is dictated by the necessary regular arrangement of repeated units within the protein myofibrils that mediate muscle contraction. Skeletal muscle cells have the usual membrane traffic pathways for partitioning newly synthesized proteins, internalizing cell surface receptors for hormones and nutrients, and mediating membrane repair. However, in muscle, these pathways must be further specialized to deal with targeting to and organizing muscle‐specific membrane structures, satisfying the unique metabolic requirements of muscle and meeting the high demand for membrane repair in a tissue that is constantly under mechanical stress. Specialized membrane traffic pathways in muscle also play a role in the formation of muscle through fusion of myoblast membranes and the development of internal muscle‐specific membrane structures during myogenesis and regeneration. It has recently become apparent that muscle‐specific isoforms of proteins that are known to mediate ubiquitous membrane traffic pathways, as well as novel muscle‐specific proteins, are involved in tissue‐specific aspects of muscle membrane traffic. Here we describe the specialized membrane structures of skeletal muscle, how these are developed, maintained and repaired by specialized and generic membrane traffic pathways, and how defects in these pathways result in muscle disease.


Molecular Biology of the Cell | 2010

The Laforin–Malin Complex, Involved in Lafora Disease, Promotes the Incorporation of K63-linked Ubiquitin Chains into AMP-activated Protein Kinase β Subunits

Daniel Moreno; Mhairi C. Towler; D. Grahame Hardie; Erwin Knecht; Pascual Sanz

A functional laforin–malin complex promotes the ubiquitination of AMP-activated protein kinase (AMPK), a sensor of cellular energy status. The laforin–malin complex promotes the formation of K63-linked ubiquitin chains, which are not involved in proteasome degradation but could regulate the subcellular localization of substrate proteins.


Journal of Lipid Research | 2010

Prevention of high-fat diet-induced muscular lipid accumulation in rats by alpha lipoic acid is not mediated by AMPK activation

Silvie Timmers; Johan de Vogel-van den Bosch; Mhairi C. Towler; Gert Schaart; Esther Moonen-Kornips; Ronald P. Mensink; Matthijs K. C. Hesselink; D. Grahame Hardie; Patrick Schrauwen

Skeletal muscle triglyceride accumulation is associated with insulin resistance in obesity. Recently, it has been suggested that α lipoic acid (ALA) improves insulin sensitivity by lowering triglyceride accumulation in nonadipose tissues via activation of skeletal muscle AMP-activated protein kinase (AMPK). We examined whether chronic ALA supplementation prevents muscular lipid accumulation that is associated with high-fat diets via activation of AMPK. In addition, we tested if ALA supplementation was able to improve insulin sensitivity in rats fed low- and high-fat diets (LFD, HFD). Supplementing male Wistar rats with 0.5% ALA for 8 weeks significantly reduced body weight, both on LFD and HFD (−24% LFD+ALA vs. LFD, P < 0.01, and −29% HFD+ALA vs. HFD, P < 0.001). Oil red O lipid staining revealed a 3-fold higher lipid content in skeletal muscle after HFD compared with LFD and ALA-supplemented groups (P < 0.05). ALA improved whole body glucose tolerance (∼20% lower total area under the curve (AUC) in ALA supplemented groups vs. controls, P < 0.05). These effects were not mediated by increased muscular AMPK activation or ALA-induced improvement of muscular insulin sensitivity. To conclude, the prevention of HFD-induced muscular lipid accumulation and the improved whole body glucose tolerance are likely secondary effects due to the anorexic nature of ALA.


PLOS ONE | 2013

Glycogen Content Regulates Peroxisome Proliferator Activated Receptor-∂ (PPAR-∂) Activity in Rat Skeletal Muscle

Andrew Philp; Matthew G. MacKenzie; Micah Y. Belew; Mhairi C. Towler; Alan Corstorphine; Angela Papalamprou; D. Grahame Hardie; Keith Baar

Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise.


Journal of Biological Chemistry | 2007

A CONSERVED SEQUENCE IMMEDIATELY N-TERMINAL TO THE BATEMAN DOMAINS IN AMP-ACTIVATED PROTEIN KINASE GAMMA SUBUNITS IS REQUIRED FOR THE INTERACTION WITH THE BETA SUBUNITS

Rosa Viana; Mhairi C. Towler; David A. Pan; David Carling; Benoit Viollet; D. Grahame Hardie; Pascual Sanz

Mammalian AMP-activated protein kinase is a serine/threonine protein kinase that acts as a sensor of cellular energy status. AMP-activated protein kinase is a heterotrimer of three different subunits, i.e. α, β, and γ, with α being the catalytic subunit and β and γ having regulatory roles. Although several studies have defined different domains in α and β involved in the interaction with the other subunits of the complex, little is known about the regions of the γ subunits involved in these interactions. To study this, we have made sequential deletions from the N termini of the γ subunit isoforms and studied the interactions with α and β subunits, both by two-hybrid analysis and by co-immunoprecipitation. Our results suggest that a conserved region of 20–25 amino acids in γ1, γ2, and γ3, immediately N-terminal to the Bateman domains, is required for the formation of a functional, active αβγ complex. This region is required for the interaction with the β subunits. The interaction between the α and γ subunits does not require this region and occurs instead within the Bateman domains of the γ subunit, although the α-γ interaction does appear to stabilize the β-γ interaction. In addition, sequential deletions from the C termini of the γ subunits indicate that deletion of any of the CBS (cystathionine β-synthase) motifs prevents the formation of a functional complex with the α and β subunits.


Current Biology | 1997

Association of a phosphatidylinositol-specific 3-kinase with a human trans-Golgi network resident protein

D.M. Hickinson; John M. Lucocq; Mhairi C. Towler; S. Clough; John James; Stephen R. James; Downes Cp; Sreenivasan Ponnambalam

The eukaryotic trans-Golgi network (TGN) is a key site for the formation of transport vesicles destined for different intracellular compartments [1]. A key marker for the mammalian TGN is TGN38/46 [2]. This integral membrane glycoprotein cycles between the TGN and the cell surface and is implicated in recruitment of cytosolic factors and regulation of at least one type of vesicle formation at the mammalian TGN [2] [3]. In this study, we have identified a phosphatidylinositol (PtdIns)-specific 3-kinase activity associated with the human orthologue (TGN46), which is sensitive to lipid kinase inhibitors. Treatment of HeLa cells with low levels of these inhibitors reveals subtle morphological changes in TGN46-positive compartments. Our findings suggest a role for PtdIns 3-kinases and presumably for the product, PtdIns 3-phosphate (PtdIns3P), in the formation of secretory transport vesicles by mechanisms conserved in yeast and mammals.


American Journal of Physiology-endocrinology and Metabolism | 2014

Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation

D. Lee Hamilton; Andrew Philp; Matthew G. MacKenzie; Amy Patton; Mhairi C. Towler; Iain J. Gallagher; Sue C. Bodine; Keith Baar

The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1-IRS-1/2 signaling, BiP/CHOP/IRE1α, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of ∼4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser501/503 and S6K1 Thr389 phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser473 phosphorylation was higher from 3–6 days, and this was associated with increased TSC2 Thr939 phosphorylation. The phosphorylation of TSC2 Thr1345 (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr1462, was unchanged at 6 days. In agreement with the phosphorylation of Thr1345, SA led to activation of AMPKα1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1α levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1.

Collaboration


Dive into the Mhairi C. Towler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Lucocq

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Baar

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew Philp

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge