Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi-Ae Lim is active.

Publication


Featured researches published by Mi-Ae Lim.


Arthritis & Rheumatism | 2014

STA‐21, a Promising STAT‐3 Inhibitor That Reciprocally Regulates Th17 and Treg Cells, Inhibits Osteoclastogenesis in Mice and Humans and Alleviates Autoimmune Inflammation in an Experimental Model of Rheumatoid Arthritis

Jin-Sil Park; Seung-Ki Kwok; Mi-Ae Lim; Eun-Kyung Kim; Jun-Geol Ryu; Sung-Min Kim; Hye-Joa Oh; Ji Hyeon Ju; Sung-Hwan Park; Ho-Youn Kim; Mi-La Cho

To investigate the impact of STA‐21, a promising STAT‐3 inhibitor, on the development and progression of inflammatory arthritis and to determine the possible mechanisms by which STA‐21 has antiarthritic effects in interleukin‐1 receptor antagonist–knockout (IL‐1Ra–KO) mice, an animal model of rheumatoid arthritis (RA).


PLOS ONE | 2013

Interferon Gamma Suppresses Collagen-Induced Arthritis by Regulation of Th17 through the Induction of Indoleamine-2,3-Deoxygenase

Jaeseon Lee; Jennifer Lee; Mi-Kyung Park; Mi-Ae Lim; Eun-Mi Park; Eun-Kyung Kim; Eun-Ji Yang; Seon-Yeong Lee; Joo-Yeon Jhun; Sung-Hwan Park; Ho-Youn Kim; Mi-La Cho

C57BL/6 mice are known to be resistant to the development of collagen-induced arthritis (CIA). However, they show a severe arthritic phenotype when the Ifng gene is deleted. Although it has been proposed that IFN-γ suppresses inflammation in CIA via suppressing Th17 which is involved in the pathogenesis of CIA, the exact molecular mechanism of the Th17 regulation by IFN-γ is poorly understood. This study was conducted to 1) clarify that arthritogenic condition of IFN-γ knockout (KO) mice is dependent on the disinhibition of Th17 and 2) demonstrate that IFN-γ-induced indoleamine2,3dioxgenase (IDO) is engaged in the regulation of Th17. The results showed that the IFN-γ KO mice displayed increased levels of IL-17 producing T cells and the exacerbation of arthritis. Also, production of IL-17 by the splenocytes of the IFN-γ KO mice was increased when cultured with type II collagen. When Il17 was deleted from the IFN-γ KO mice, only mild arthritis developed without any progression of the arthritis score. The proportion of CD44highCD62Llow memory-like T cells were elevated in the spleen, draining lymph node and mesenteric lymph node of IFN-γ KO CIA mice. Meanwhile, CD44lowCD62Lhigh naïve T cells were increased in IFN-γ and IL-17 double KO CIA mice. When Th17 polarized CD4+ T cells of IFN-γ KO mice were co-cultured with their own antigen presenting cells (APCs), a greater increase in IL-17 production was observed than in co-culture of the cells from wild type mice. In contrast, when APCs from IFN-γ KO mice were pretreated with IFN-γ, there was a significant reduction in IL-17 in the co-culture system. Of note, pretreatment of 1-methyl-DL- tryptophan, a specific inhibitor of IDO, abolished the inhibitory effects of IFN-γ. Given that IFN-γ is a potent inducer of IDO in APCs, these results suggest that IDO is involved in the regulation of IL-17 by IFN-γ.


Arthritis & Rheumatism | 2013

p53 Controls Autoimmune Arthritis via STAT‐Mediated Regulation of the Th17 Cell/Treg Cell Balance in Mice

Jin-Sil Park; Mi-Ae Lim; Mi-La Cho; Jun-Geol Ryu; Young-Mee Moon; Joo-Yeon Jhun; Jae-Kyeong Byun; Eun-Kyung Kim; Sue-Yun Hwang; Ji Hyeon Ju; Seung-Ki Kwok; Ho-Youn Kim

OBJECTIVE To investigate the connection between p53 and interleukin-17-producing Th17 cell/Treg cell balance in rheumatoid arthritis (RA). METHODS Th17 cell and Treg cell frequencies were analyzed by flow cytometry, and cytokine levels in the supernatant were determined using enzyme-linked immunosorbent assays. The expression of transcription factors was analyzed by immunostaining and Western blotting, and the interactions between p53 and STAT-3 or STAT-5 were determined by immunoprecipitation-Western blot analysis. A p53 agonist was administered in the collagen-induced arthritis (CIA) model, and the effects in vivo were determined. RESULTS CD4+ T cells from p53-/- mice decreased the activity of STAT-5, lowered the level of phosphorylated STAT-5, and compromised Treg cell differentiation. The protein p53 bound STAT-5 directly, and this interaction was enhanced with increasing p53 activity. Under inflammatory conditions, p53 suppressed Th17 cell differentiation and skewed T cells toward Treg cell differentiation through the activation of STAT-5 signaling cascades. In mice with CIA, injection of a p53 overexpression vector or an antagonist of Mdm2 had the effect of controlling arthritis development in vivo. The regulatory effect of p53 was recapitulated in the cells of RA patients, with more pronounced suppression due to the repressed status of p53 in RA. CONCLUSION We demonstrated a link between p53-mediated and STAT-mediated regulation of Th17 cells/Treg cells in RA. Our results suggest that factors involved in this pathway might constitute novel therapeutic targets for the treatment of RA.


Experimental and Molecular Medicine | 2013

In vivo action of IL-27: reciprocal regulation of Th17 and Treg cells in collagen-induced arthritis

Su-Jin Moon; Jin-Sil Park; Yu-Jung Heo; Chang-Min Kang; Eun-Kyung Kim; Mi-Ae Lim; Jun-Geol Ryu; Seong Jeong Park; Kyung Su Park; Young-Chul Sung; Sung-Hwan Park; Ho-Youn Kim; Jun-Ki Min; Mi-La Cho

Interleukin (IL)-27 is a novel cytokine of the IL-6/IL-12 family that has been reported to be involved in the pathogenesis of autoimmune diseases and has a pivotal role as both a pro- and anti-inflammatory cytokine. We investigated the in vivo effects of IL-27 on arthritis severity in a murine collagen-induced arthritis (CIA) model and its mechanism of action regarding control of regulatory T (Tregs) and IL-17-producing T helper 17 (Th17) cells. IL-27-Fc-treated CIA mice showed a lower severity of arthritis. IL-17 expression in the spleens was significantly decreased in IL-27-Fc-treated CIA mice compared with that in the CIA model. The Th17 population was decreased in the spleens of IL-27-Fc-treated CIA mice, whereas the CD4+CD25+Foxp3+ Treg population increased. In vitro studies revealed that IL-27 inhibited IL-17 production in murine CD4+ T cells, and the effect was associated with retinoic acid-related orphan receptor γT and signal transducer and activator of transcription 3 inhibition. In contrast, fluorescein isothiocyanate-labeled forkhead box P3 (Foxp3) and IL-10 were profoundly augmented by IL-27 treatment. Regarding the suppressive capacity of Treg cells, the proportions of CTLA-4+ (cytotoxic T-lymphocyte antigen 4), PD-1+ (programmed cell death protein 1) and GITR+ (glucocorticoid-induced tumor necrosis factor receptor) Tregs increased in the spleens of IL-27-Fc-treated CIA mice. Furthermore, in vitro differentiated Treg cells with IL-27 exerted a more suppressive capacity on T-cell proliferation. We found that IL-27 acts as a reciprocal regulator of the Th17 and Treg populations in CD4+ cells isolated from healthy human peripheral blood mononuclear cells (PBMCs), as well as from humans with rheumatoid arthritis (RA) PBMCs. Our study suggests that IL-27 has the potential to ameliorate overwhelming inflammation in patients with RA through a reciprocal regulation of Th17 and Treg cells.


Journal of Immunology | 2014

JAK2-STAT3 Blockade by AG490 Suppresses Autoimmune Arthritis in Mice via Reciprocal Regulation of Regulatory T Cells and Th17 Cells

Jin-Sil Park; Jennifer Lee; Mi-Ae Lim; Eun-Kyung Kim; Sung-Min Kim; Jun-Geol Ryu; Jae Ho Lee; Seung-Ki Kwok; Kyung-Su Park; Ho-Youn Kim; Sung-Hwan Park; Mi-La Cho

IL-6–mediated STAT3 signaling is essential for Th17 differentiation and plays a central role in the pathogenesis of rheumatoid arthritis. To investigate the molecular mechanism underlying the antirheumatic effects and T cell regulatory effects of STAT3 inhibition, we studied the effects of the JAK 2 inhibitor AG490 on Th17 cell/regulatory T cell (Treg) balance and osteoclastogenesis. AG490 was administered to mice with collagen-induced arthritis (CIA) via i.p. injection, and its in vivo effects were determined. Differential expression of proinflammatory cytokines, including IL-17A, IL-1β, and IL-6, was analyzed by immunohistochemistry. Levels of phosphorylated STAT3 and STAT5 and differentiation of Th17 cells and Tregs after AG490 treatment in our CIA model were analyzed by immunostaining. In vitro development of Th17 cells and Tregs was analyzed by flow cytometry and real-time PCR. AG490 ameliorated the arthritic phenotype in CIA and increased the proportion of Foxp3+ Tregs. In contrast, the proportion of IL-17A–producing T cells and levels of inflammatory markers were reduced in AG490-treated mice. Numbers of p-STAT3+ CD4+ T cells and p-STAT5+ CD4+ T cells were reduced and elevated, respectively, after treatment with AG490. Furthermore, AG490 markedly increased the expression of molecules associated with Treg development (ICOS, programmed cell death protein 1, ICAM-1, and CD103). The development and function of osteoclasts were suppressed by AG490 treatment. Our results suggest that AG490, specifically regulating the JAK2/STAT3 pathway, may be a promising treatment for rheumatoid arthritis.


PLOS ONE | 2012

Grape-Seed Proanthocyanidin Extract as Suppressors of Bone Destruction in Inflammatory Autoimmune Arthritis

Jin-Sil Park; Mi-Kyung Park; Hye-Joa Oh; Yun-Ju Woo; Mi-Ae Lim; Jong-Ho Lee; Ji Hyeon Ju; Young Ok Jung; Zang Hee Lee; Sung-Hwan Park; Ho-Youn Kim; Mi-La Cho; Jun-Ki Min

Chronic autoimmune inflammation, which is commonly observed in rheumatoid arthritis (RA), disrupts the delicate balance between bone resorption and formation causing thedestruction of the bone and joints. We undertook this study to verify the effects of natural grape-seed proanthocyanidin extract (GSPE), an antioxidant, on chronic inflammation and bone destruction. GSPE administration ameliorated the arthritic symptoms of collagen-induced arthritis (CIA), which are representative of cartilage and bone destruction. GSPE treatment reduced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and osteoclast activity and increased differentiation of mature osteoblasts. Receptor activator of NFκB ligand expression in fibroblasts from RA patients was abrogated with GSPE treatment. GSPE blocked human peripheral blood mononuclear cell-derived osteoclastogenesis and acted as an antioxidant. GSPE improved the arthritic manifestations of CIA mice by simultaneously suppressing osteoclast differentiation and promoting osteoblast differentiation. Our results suggest that GSPE may be beneficial for the treatment of inflammation-associated bone destruction.


Arthritis & Rheumatism | 2014

Rebamipide Suppresses Collagen-Induced Arthritis Through Reciprocal Regulation of Th17/Treg Cell Differentiation and Heme Oxygenase 1 Induction

Su-Jin Moon; Jin-Sil Park; Yun-Ju Woo; Mi-Ae Lim; Sung-Min Kim; Seon-Yeong Lee; Eun-Kyung Kim; Hee Jin Lee; Weon Sun Lee; Sang-Hi Park; Jeong-Hee Jeong; Sung-Hwan Park; Ho-Youn Kim; Mi-La Cho; Jun-Ki Min

Rebamipide, a gastroprotective agent, has the ability to scavenge reactive oxygen radicals. Increased oxidative stress is implicated in the pathogenesis of rheumatoid arthritis (RA). We undertook this study to investigate the impact of rebamipide on the development of arthritis and the pathophysiologic mechanisms by which rebamipide attenuates arthritis severity in a murine model of RA.


Experimental Gerontology | 2014

Increased Th17 differentiation in aged mice is significantly associated with high IL-1β level and low IL-2 expression☆☆☆

Mi-Ae Lim; Jennifer Lee; Jin-Sil Park; Joo-Yeon Jhun; Young Mi Moon; Mi-La Cho; Ho-Youn Kim

OBJECTIVE Aging has been reported to be associated with changes in immune function. Although frequent infection and the development of malignancy suggest the decline of immune function with aging, changes toward proinflammatory conditions also develop at the same time. Th17 cells are well known CD4(+) T cell subpopulation closely linked to chronic inflammation and autoimmunity. In this study, changes in the Th17 population were investigated to elucidate a possible mechanism for this response with aging. METHODS Splenocytes were isolated from 2-month-old (young) and 20-month-old (aged) mice. CD4(+)CD44(+) memory T cells and CD4(+)CD62L(+) naïve T cells were isolated and sorted using magnetic beads and flow cytometry. The frequency of IL-17-producing cells was measured using flow cytometry. The expression of IL-17 and Th17-related factors at the mRNA level was measured with RT-PCR. IL-17 and Il-1β expression in spleen tissues was additionally assessed using confocal microscopy. RESULTS The proportion of IL-17-producing CD4(+) T cells was higher in the splenocytes among the old mice than those of the young mice. When splenocytes were cultured in Th17 polarizing conditions, the proportion of IL-17 producing CD4(+) T cells was higher in aged mice as well. This was consistently observed when naïve and memory cells were isolated and differentiated into Th17 respectively. In addition, the expression of retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt) and other Th17-related factors (AhR, CCR6, and CCL20) increased in the splenocytes of aged mice compared to the young mice. The expression of IL-1β, showing to promote Th17 differentiation, was higher in the aged mice. Likewise, CD4(+) T cell expression of IL-1R was higher in the aged mice, suggesting that the CD4(+) T cells of the aged mice are readily prepared to differentiate into Th17 cells in response to IL-1β. Confocal microscopy showed that cells positive for IL-1R or IL-1β were more frequent in the spleens of the aged mice. When an anti-IL-2 antibody was applied, the proportion of IL-17-producing cells increased more prominently in the young mice. We observed that IL-2 production and IL-2R expression were reduced in the aged mice, respectively, explaining the blunted response to the anti-IL-2 antibody treatment and the consequent minimal change in the Th17 population. CONCLUSION We demonstrated that the proportion of Th17 cells increased in the aged mice both in naïve and memory cell populations. Elevation of IL-1R and IL-1β expression and the reduction in IL-2 and IL-2R expression in aged mice seemed to promote Th17 differentiation. Our results suggest that enhanced Th17 differentiation in aging may have a pathogenic role in the development of Th17-mediated autoimmune diseases.


Arthritis & Rheumatism | 2014

Dual-specificity phosphatase 5 attenuates autoimmune arthritis in mice via reciprocal regulation of the Th17/Treg cell balance and inhibition of osteoclastogenesis.

Su-Jin Moon; Mi-Ae Lim; Jin-Sil Park; Jae-Kyeong Byun; Sung-Min Kim; Mi-Kyung Park; Eun-Kyung Kim; Young-Mee Moon; Jun-Ki Min; Sung-Min Ahn; Sung-Hwan Park; Mi-La Cho

Dual‐specificity phosphatase 5 (DUSP‐5) is a phosphatase that specifically dephosphorylates both phosphoserine and phosphotyrosine residues of MAPK. The dysregulated activation of MAPK contributes to the pathogenesis of rheumatoid arthritis. This study was undertaken to investigate the therapeutic potential of DUSP‐5 in preventing the development of autoimmune arthritis in an animal model.


Autoimmunity | 2012

Adoptive transfer of all-trans-retinal-induced regulatory T cells ameliorates experimental autoimmune arthritis in an interferon-gamma knockout model.

Eun-Joo Jeon; Bo-Young Yoon; Jung-Yeon Lim; Hye-Jwa Oh; Hyun-Sil Park; Min-Jung Park; Mi-Ae Lim; Mi-Kyung Park; Kyung-Woon Kim; Mi-La Cho; Seok-Goo Cho

Maintaining an appropriate balance between subsets of CD4+ helper T cells and T regulatory cells (Tregs) is a critical process in immune homeostasis and a protective mechanism against autoimmunity and inflammation. To identify the role of vitamin A-related compounds, we investigated the regulation of interleukin (IL)-17-producing helper T cells (Th17 cells) and Tregs treated with all-trans-retinal (retinal). CD4+T cells or total cells from the spleens of C57BL/6 mice were stimulated under Treg-polarizing (anti-CD3/CD28 and TGF-β) or Th17-polarizing (anti-CD3/CD28, TGF-β, and IL-6) conditions in the presence or absence of retinal. To analyze their suppressive abilities, retinal-induced Tregs or TGF-β-induced Tregs were co-cultured with responder T cells. Collagen-induced arthritis (CIA) was established in interferon (IFN)-γ knockout mice. On day 13, retinal-induced Tregs were adoptively transferred to mice with established CIA after second immunizations. Compared with TGF-β-induced Treg cells, retinal-induced Tregs showed increased Foxp3 expression and mediated stronger suppressive activity. Under Th17-polarizing conditions, retinal inhibited the production of IL-17 and increased the expression of Foxp3.Retinal-induced Tregs showed therapeutic effects in IFN-γ knockout CIA mice. Thus, we demonstrated that retinal reciprocally regulates Foxp3+ Tregs and Th17 cells. These findings suggest that retinal, a vitamin A metabolite, can regulate the balance between pro- and anti-inflammatory immunity. A better understanding of the manipulation of Foxp3 and Tregs may enable the application of this tremendous therapeutic potential in various autoimmune diseases.

Collaboration


Dive into the Mi-Ae Lim's collaboration.

Top Co-Authors

Avatar

Mi-La Cho

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Jin-Sil Park

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Sung-Hwan Park

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Ho-Youn Kim

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Eun-Kyung Kim

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Sung-Min Kim

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Seung-Ki Kwok

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Mi-Kyung Park

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Jennifer Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Jun-Ki Min

Catholic University of Korea

View shared research outputs
Researchain Logo
Decentralizing Knowledge