Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi Deng is active.

Publication


Featured researches published by Mi Deng.


eLife | 2014

The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor

Xiaofei Yu; Yuhao Wang; Mi Deng; Yun Li; Kelly A. Ruhn; Cheng Cheng Zhang; Lora V. Hooper

Innate lymphoid cells (ILCs) are recently identified lymphocytes that limit infection and promote tissue repair at mucosal surfaces. However, the pathways underlying ILC development remain unclear. Here we show that the transcription factor NFIL3 directs the development of a committed bone marrow precursor that differentiates into all known ILC lineages. NFIL3 was required in the common lymphoid progenitor (CLP), and was essential for the differentiation of αLP, a bone marrow cell population that gives rise to all known ILC lineages. Clonal differentiation studies revealed that CXCR6+ cells within the αLP population differentiate into all ILC lineages but not T- and B-cells. We further show that NFIL3 governs ILC development by directly regulating expression of the transcription factor TOX. These findings establish that NFIL3 directs the differentiation of a committed ILC precursor that gives rise to all ILC lineages and provide insight into the defining role of NFIL3 in ILC development. DOI: http://dx.doi.org/10.7554/eLife.04406.001


Oncogene | 2006

Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities.

David Wan Cheng Li; J. Liu; P.C. Schmid; R. Schlosser; H. Feng; W.-B. Liu; Q. Yan; L. Gong; Shuming Sun; Mi Deng; Y. Liu

We have previously demonstrated that the serine/threonine protein phosphatase-1 (PP-1) plays an important role in promoting cell survival. However, the molecular mechanisms by which PP-1 promotes survival remain largely unknown. In the present study, we provide evidence to show that PP-1 can directly dephosphorylate a master regulator of apoptosis, p53, to negatively modulate its transcriptional and apoptotic activities, and thus to promote cell survival. As a transcriptional factor, the function of p53 can be greatly regulated by phosphorylation and dephosphorylation. While the kinases responsible for phosphorylation of the 17 serine/threonine sites have been identified, the dephosphorylation of these sites remains largely unknown. In the present study, we demonstrate that PP-1 can dephosphorylate p53 at Ser-15 and Ser-37 through co-immunoprecipitation, in vitro and in vivo dephosphorylation assays, overexpression and silence of the gene encoding the catalytic subunit for PP-1. We further show that mutations mimicking constitutive dephosphorylation or phosphorylation of p53 at these sites attenuate or enhance its transcriptional activity, respectively. As a result of the changed p53 activity, expression of the downstream apoptosis-related genes such as bcl-2 and bax is accordingly altered and the apoptotic events are either largely abrogated or enhanced. Thus, our results demonstrate that PP-1 directly dephosphorylates p53, and dephosphorylation of p53 has as important impact on its functions as phosphorylation does. In addition, our results reveal that one of the molecular mechanisms by which PP-1 promotes cell survival is to dephosphorylate p53, and thus negatively regulate p53-dependent death pathway.


Cell Death & Differentiation | 2010

Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation

L. Xiao; L. Gong; D. Yuan; Mi Deng; Xiaoming Zeng; L. Chen; Lan Zhang; Q. Yan; J. Liu; Xiao-Hui Hu; Shuming Sun; H. Ma; C. B. Zheng; Hu Fu; Pei Chao Chen; Junqiong Zhao; Sisi Xie; Li Jun Zou; Yamei Xiao; W.-B. Liu; Jian Zhang; Y. Liu; David Wan Cheng Li

AKT pathway has a critical role in mediating signaling transductions for cell proliferation, differentiation and survival. Previous studies have shown that AKT activation is achieved through a series of phosphorylation steps: first, AKT is phosphorylated at Thr-450 by JNK kinases to prime its activation; then, phosphoinositide-dependent kinase 1 phosphorylates AKT at Thr-308 to expose the Ser-473 residue; and finally, AKT is phosphorylated at Ser-473 by several kinases (PKD2 and others) to achieve its full activation. For its inactivation, the PH-domain containing phosphatases dephosphorylate AKT at Ser-473, and protein serine/threonine phosphatase-2A (PP-2A) dephosphorylates it at Thr-308. However, it remains unknown regarding which phosphatase dephosphorylates AKT at Thr-450 during its inactivation. In this study, we present both in vitro and in vivo evidence to show that protein serine/threonine phosphatase-1 (PP-1) is a major phosphatase that directly dephosphorylates AKT to modulate its activation. First, purified PP-1 directly dephosphorylates AKT in vitro. Second, immunoprecipitation and immunocolocalization showed that PP-1 interacts with AKT. Third, stable knock down of PP-1α or PP-1β but not PP-1γ, PP-2Aα or PP-2Aβ by shRNA leads to enhanced phosphorylation of AKT at Thr-450. Finally, overexpression of PP-1α or PP-1β but not PP-1γ, PP-2Aα or PP-2Aβ results in attenuated phosphorylation of AKT at Thr-450. Moreover, our results also show that dephosphorylation of AKT by PP-1 significantly modulates its functions in regulating the expression of downstream genes, promoting cell survival and modulating differentiation. These results show that PP-1 acts as a major phosphatase to dephosphorylate AKT at Thr-450 and thus modulate its functions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development

Q. Yan; L. Gong; Mi Deng; Lan Zhang; Shuming Sun; J. Liu; Haili Ma; D. Yuan; Pei Chao Chen; Xiao-Hui Hu; Jinping Liu; J. Qin; L. Xiao; Xiao Qin Huang; Jian Zhang; David Wan Cheng Li

Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti–Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities.


Cancer Research | 2008

Protein phosphatase-2A is a target of epigallocatechin-3-gallate and modulates p53-Bak apoptotic pathway.

J. Qin; H.-G. Chen; Q. Yan; Mi Deng; Jinping Liu; Stephan Doerge; Wei Ya Ma; Zigang Dong; David Wan Cheng Li

(-)-Epigallocatechin-3-gallate (EGCG) is a well-known chemoprevention factor. Recent studies have revealed that EGCG triggers cancer cells undergoing apoptosis through p53-dependent pathway. How EGCG activates p53-dependent apoptosis is not fully understood. In the present study using JB6 cell as a model system, we have shown that EGCG can negatively regulate protein serine/threonine phosphatase-2A (PP-2A) to positively regulate p53-dependent apoptosis. First, EGCG at physiologic levels down-regulates PP-2A at the protein and enzyme activity levels. Second, EGCG induces apoptosis of JB6 cells, which is associated with hyperphosphorylation of p53 and up-regulation of the proapoptotic gene, Bak. DNA sequence analysis, gel mobility shifting, chromatin immunoprecipitation, and reporter gene activity assays revealed that p53 directly controls Bak in JB6 cells. Knockdown of p53 and Bak expression with RNAi substantially inhibits EGCG-induced apoptosis. Third, PP-2A directly interacts with p53 and dephosphorylates p53 at Ser-15 in vitro and in vivo. Fourth, overexpression of the catalytic subunit for PP-2A down-regulates p53 phosphorylation at Ser15, attenuates expression of the downstream proapoptotic gene, Bak, and antagonizes EGCG-induced apoptosis. Inhibition of PP-2A activity enhances p53 phosphorylation at Ser-15 and up-regulates Bak expression to promote EGCG-induced apoptosis. Finally, in the p53(-/-) H1299 and p53(+/+) H1080 cells, EGCG down-regulates PP-2A similarly but induces differential apoptosis. In summary, our results show that (a) PP-2A directly dephosphorylates p53 at Ser-15; (b) P53 directly controls Bak expression; and (c) EGCG negatively regulates PP-2A. Together, our results show that EGCG-mediated negative regulation of PP-2A is an important molecular event for the activation of p53-dependent apoptosis during its chemoprevention.


Current Molecular Medicine | 2012

αA- and αB-Crystallins Interact with Caspase-3 and Bax to Guard Mouse Lens Development

Wenfeng Hu; L. Gong; Z. Cao; Haili Ma; Weike Ji; Mi Deng; Mugen Liu; Xiao-Hui Hu; P. Chen; Q. Yan; H.-G. Chen; J. Liu; S. Sun; L. Zhang; Jiao Liu; E. Wawrousek; David Wan Cheng Li

The small heat shock protein, α-crystallin, exists in two isoforms, αA and αB, and displays strong ability against stress-induced apoptosis. Regarding their functional mechanisms, we and others have demonstrated that they are able to regulate members in both caspase and Bcl-2 families. In addition, we have also shown that αA and αB may display differential anti-apoptotic mechanisms under certain stress conditions. While αA-crystallin regulates activation of the AKT signaling pathway, αB negatively regulates the MAPK pathway to suppress apoptosis induced by UV and oxidative stress. Although previous studies revealed that αA and αB could regulate members in both caspase and Bcl-2 families, the molecular mechanism, especially the in vivo regulation still waits to be elucidated. In the present communication, we present both in vitro and in vivo evidence to further demonstrate the regulation of caspase-3 and Bax by αA and αB. First, Surface Plasmon Resonance (SPR) and yeast two-hybrid selection analysis demonstrate that αA and αB directly bind to caspase-3 and Bax with differential affinities. Second, immunohistochemistry reveals that αA and αB regulate caspase-3 and Bax at different developmental stages of mouse embryo. Third, coimmunoprecipitation shows that αA and αB form in vivo interacting complexes with caspase-3 and Bax. Together, our results further confirm that αA and αB regulate caspase-3 and Bax in vitro and in vivo to regulate lens differentiation.


Nature Cell Biology | 2015

The ITIM-containing receptor LAIR1 is essential for acute myeloid leukaemia development

Xunlei Kang; Zhigang Lu; Changhao Cui; Mi Deng; Yuqi Fan; Baijun Dong; Xin Han; Fuchun Xie; Jeffrey W. Tyner; John E. Coligan; Robert H. Collins; Xiangshu Xiao; M. James You; Cheng Cheng Zhang

Conventional strategies are not particularly successful in the treatment of leukaemia, and identification of signalling pathways crucial to the activity of leukaemia stem cells will provide targets for the development of new therapies. Here we report that certain receptors containing the immunoreceptor tyrosine-based inhibition motif (ITIM) are crucial for the development of acute myeloid leukaemia (AML). Inhibition of expression of the ITIM-containing receptor LAIR1 does not affect normal haematopoiesis but abolishes leukaemia development. LAIR1 induces activation of SHP-1, which acts as a phosphatase-independent signalling adaptor to recruit CAMK1 for activation of downstream CREB in AML cells. The LAIR1–SHP-1–CAMK1–CREB pathway sustains the survival and self-renewal of AML stem cells. Intervention in the signalling initiated by ITIM-containing receptors such as LAIR1 may result in successful treatment of AML.


Cell Cycle | 2016

Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors.

Xunlei Kang; Jaehyup Kim; Mi Deng; Samuel John; Heyu Chen; Guojin Wu; Hiep Phan; Cheng Cheng Zhang

ABSTRACT Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology – as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.


Journal of Biological Chemistry | 2007

Protein Phosphatase-1 Modulates the Function of Pax-6, a Transcription Factor Controlling Brain and Eye Development

Q. Yan; W.-B. Liu; J. Qin; Jinping Liu; H.-G. Chen; X.–Q. Huang; L. Chen; Shuming Sun; Mi Deng; L. Gong; Yong Li; Lan Zhang; Y. Liu; Hao Feng; Yamei Xiao; Yun Liu; David Wan Cheng Li

Pax-6 is an evolutionarily conserved transcription factor and acts high up in the regulatory hierarchy controlling eye and brain development in humans, mice, zebrafish, and Drosophila. Previous studies have shown that Pax-6 is a phosphoprotein, and its phosphorylation by ERK, p38, and homeodomain-interacting protein kinase 2 greatly enhances its transactivation activity. However, the protein phosphatases responsible for the dephosphorylation of Pax-6 remain unknown. Here, we present both in vitro and in vivo evidence to show that protein serine/threonine phosphatase-1 is a major phosphatase that directly dephosphorylates Pax-6. First, purified protein phosphatase-1 directly dephosphorylates Pax-6 in vitro. Second, immunoprecipitation-linked Western blot revealed that both protein phosphatase-1α and protein phosphatase-1β interact with Pax-6. Third, overexpression of protein phosphatase-1 in human lens epithelial cells leads to dephosphorylation of Pax-6. Finally, inhibition of protein phosphatase-1 activity by calyculin A or knockdown of protein phosphatase-1α and protein phosphatase-1β by RNA interference leads to enhanced phosphorylation of Pax-6. Moreover, our results also demonstrate that dephosphorylation of Pax-6 by protein phosphatase-1 significantly modulates its function in regulating expression of both exogenous and endogenous genes. These results demonstrate that protein phosphatase 1 acts as a major phosphatase to dephosphorylate Pax-6 and modulate its function.


Journal of Biological Chemistry | 2005

Human Telomerase Reverse Transcriptase Immortalizes Bovine Lens Epithelial Cells and Suppresses Differentiation through Regulation of the ERK Signaling Pathway

Juan Wang; Hao Feng; Xiao Qin Huang; Hua Xiang; Ying Wei Mao; J. Liu; Q. Yan; W.-B. Liu; Y. Liu; Mi Deng; L. Gong; Shuming Sun; Chen Luo; Shaojun Liu; Xuan Jie Zhang; Yun Liu; David Wan Cheng Li

Telomerase is a specialized reverse transcriptase that extends telomeres of eukaryotic chromosomes. The functional telomerase complex contains a telomerase reverse transcriptase catalytic subunit and a telomerase template RNA. We have previously demonstrated that human telomerase reverse transcriptase (hTERT) catalytic subunit is functionally compatible with a telomerase template RNA from rabbit. In this study, we show that hTERT is also functionally compatible with a telomerase template RNA from bovine. Introduction of hTERT into bovine lens epithelial cells (BLECs) provides the transfected cells telomerase activity. The expressed hTERT in BLECs supports normal growth of the transfected cells for 108 population doublings so far, and these cells are still extremely healthy in both morphology and growth. In contrast, the vector-transfected cells display growth crisis after 20 population doublings. These cells run into cellular senescence due to shortening of the telomeres and also commit differentiation as indicated by the accumulation of the differentiation markers, β-crystallin and filensin. hTERT prevents the occurrence of both events. By synthesizing new telomere, hTERT prevents replicative senescence, and through regulation of MEK/ERK, protein kinase C, and protein kinase A and eventual suppression of the MEK/ERK signaling pathway, hTERT inhibits differentiation of BLECs. Our finding that hTERT can suppress RAS/RAF/MEK/ERK signaling pathway to prevent differentiation provides a novel mechanism to explain how hTERT regulates cell differentiation.

Collaboration


Dive into the Mi Deng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Gong

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

J. Liu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Q. Yan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

W.-B. Liu

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Weike Ji

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

D. Yuan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

H.-G. Chen

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shuming Sun

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Lan Zhang

Hunan Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge