Mi Hee Kwack
Kyungpook National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mi Hee Kwack.
Journal of Investigative Dermatology | 2012
Mi Hee Kwack; Moon Kyu Kim; Jung C. Kim; Young Kwan Sung
Recently, we suggested that Dickkopf 1 (DKK-1) is a pathogenic mediator involved in male pattern baldness. As premature catagen onset is a key characteristic of male pattern baldness, in this study, we evaluated whether DKK-1 has a role as a catagen inducer in hair cycling. Herein, we report that recombinant human DKK-1 (rhDKK-1) injection into the hypodermis of mice during anagen caused premature onset of catagen, whereas neutralizing DKK-1 antibody delayed anagen-to-catagen transition in mice. Moreover, treatment with rhDKK-1 led to a decrease in final hair follicle length, whereas DKK-1 antibody led to an increase compared with control animals. In addition, DKK-1 and DKK-1 messenger RNA expression is most upregulated in follicular keratinocytes of late anagen in depilation-induced hair cycle progression. Moreover, we observed that rhDKK-1 blocks canonical Wnt-mediated activation of β-catenin signaling and induces the proapoptotic protein Bax, resulting in apoptosis in outer root sheath keratinocytes. Taken together, our data strongly suggest that DKK-1 is involved in anagen-to-catagen transition in the hair cycle by regulating the activity of follicular keratinocytes.
Journal of Dermatological Science | 2011
Mi Hee Kwack; Bo Mi Kang; Moon Kyu Kim; Jung Chul Kim; Young Kwan Sung
BACKGROUND It is believed that the length of the actively growing phase of the anagen hair cycle mainly contributes to hair length. Recent studies showed that maintenance of β-catenin activity in the dermal papilla cells (DPCs) enables hair follicles to keep actively growing. Topical minoxidil treatment promotes hair growth in men with androgenetic alopecia, suggesting that minoxidil may prolong the actively growing phase of the anagen hair cycle. OBJECTIVE To investigate whether minoxidil prolongs the anagen hair cycle in mice and, if so, to investigate whether minoxidil activates β-catenin pathway in human DPCs. METHODS Dorsal skins of C57BL/6 mice were depilated to synchronize the hair cycle. After 10 days, 3% minoxidil were topically applied daily for 10 days. Sections of back skins were stained with hematoxylin and eosin. Hair follicles were graded and hair cycle score (HCS) was calculated. Cultured human DPCs were transiently transfected with the β-catenin responsive TCF reporter plasmid (pTopflash) and corresponding negative control reporter (pFopflash) to assess the activity of β-catenin signaling by minoxidil. Immunofluorescence staining and immunoblot were performed to examine the expression and localization of β-catenin in the presence or absence of minoxidil. Phosphorylation of GSK3β, PKA and PKB were also examined by immunoblot after minoxidil treatment. RT-PCR analysis and immunoblot were employed to investigate the expression of β-catenin pathway targets in DPCs, such as Axin2, Lef-1, and EP2. RESULTS Modest extension of anagen phase thereby delay of catagen progression was observed by application of minoxidil in mice. Minoxidil stimulated the transcriptional activity of pTopflash but not pFopflash. Nuclear accumulation of β-catenin was also observed after minoxidil treatment. Immunoblot further showed that minoxidil treatment increases the phosphorylation of GSK3β, PKA and PKB. Moreover, minoxidil induced Axin2, Lef-1, and EP2 expression. CONCLUSION Our results strongly suggest that minoxidil extends the anagen phase by activating β-catenin activity in the DPCs.
Journal of Investigative Dermatology | 2012
Mi Hee Kwack; Ji Sup Ahn; Moon Kyu Kim; Jung Chul Kim; Young Kwan Sung
Autocrine and paracrine factors are produced by balding dermal papilla (DP) cells following dihydrotestosterone (DHT)-driven alterations and are believed to be key factors involved in male pattern baldness. Herein we report that the IL-6 is upregulated in balding DP cells compared with non-balding DP cells. IL-6 was upregulated 3 hours after 10-100 nM DHT treatment, and ELISA showed that IL-6 was secreted from balding DP cells in response to DHT. IL-6 receptor (IL-6R) and glycoprotein 130 (gp130) were expressed in follicular keratinocytes, including matrix cells. Recombinant human IL-6 (rhIL-6) inhibited hair shaft elongation and suppressed proliferation of matrix cells in cultured human hair follicles. Moreover, rhIL-6 injection into the hypodermis of mice during anagen caused premature onset of catagen. Taken together, our data strongly suggest that DHT-inducible IL-6 inhibits hair growth as a paracrine mediator from the DP.
Stem Cells and Development | 2013
Yun-Mi Jeong; Young Kwan Sung; Wang-Kyun Kim; Ji Hye Kim; Mi Hee Kwack; In-Soo Yoon; Dae-Duk Kim; Jong-Hyuk Sung
Hypoxia induces the survival and regenerative potential of adipose-derived stem cells (ASCs), but there are tremendous needs to find alternative methods for ASC preconditioning. Therefore, this work investigated: (1) the ability of low-dose ultraviolet B (UVB) radiation to stimulate the survival, migration, and tube-forming activity of ASCs in vitro; (2) the ability of UVB preconditioning to enhance the hair growth-promoting capacity of ASCs in vivo; and (3) the mechanism of action for ASC stimulation by UVB. Although high-dose UVB decreased the proliferation of ASCs, low-dose (10 or 20 mJ/cm(2)) treatment increased their survival, migration, and tube-forming activity. In addition, low-dose UVB upregulated the expression of ASC-derived growth factors, and a culture medium conditioned by UVB-irradiated ASCs increased the proliferation of dermal papilla and outer root sheet cells. Notably, injection of UVB-preconditioned ASCs into C(3)H/HeN mice significantly induced the telogen-to-anagen transition and increased new hair weight in vivo. UVB treatment significantly increased the generation of reactive oxygen species (ROS) in cultured ASCs, and inhibition of ROS generation by diphenyleneiodonium chloride (DPI) significantly attenuated UVB-induced ASC stimulation. Furthermore, NADPH oxidase 4 (Nox4) expression was induced in ASCs by UVB irradiation, and Nox4 silencing by small interfering RNA, like DPI, significantly reduced UVB-induced ROS generation. These results suggest that the primary involvement of ROS generation in UVB-mediated ASC stimulation occurs via the Nox4 enzyme. This is the first indication that a low dose of UVB radiation and/or the control of ROS generation could potentially be incorporated into a novel ASC preconditioning method for hair regeneration.
British Journal of Dermatology | 2009
Mi Hee Kwack; Seung Hyun Shin; Soon Re Kim; Sang-Uk Im; In Sook Han; Myoung-Nam Kim; J.C. Kim; Young Kwan Sung
Background l‐Ascorbic acid 2‐phosphate (Asc 2‐P), a derivative of l‐ascorbic acid, promotes elongation of hair shafts in cultured human hair follicles and induces hair growth in mice.
Stem Cells and Development | 2014
Ji Hye Kim; Wang-Kyun Kim; Young Kwan Sung; Mi Hee Kwack; Seung Yong Song; Joon-Seok Choi; Sang Gyu Park; TacGhee Yi; Hyunjoo Lee; Dae-Duk Kim; Hyun Min Seo; Sun U. Song; Jong-Hyuk Sung
Although adipose-derived stem cells (ASCs) show promise for cell therapy, there is a tremendous need for developing ASC activators. In the present study, we investigated whether or not vitamin C increases the survival, proliferation, and hair-regenerative potential of ASCs. In addition, we tried to find the molecular mechanisms underlying the vitamin C-mediated stimulation of ASCs. Sodium-dependent vitamin C transporter 2 (SVCT2) is expressed in ASCs, and mediates uptake of vitamin C into ASCs. Vitamin C increased the survival and proliferation of ASCs in a dose-dependent manner. Vitamin C increased ERK1/2 phosphorylation, and inhibition of the mitogen-activated protein kinase (MAPK) pathway attenuated the proliferation of ASCs. Microarray and quantitative polymerase chain reaction showed that vitamin C primarily upregulated expression of proliferation-related genes, including Fos, E2F2, Ier2, Mybl1, Cdc45, JunB, FosB, and Cdca5, whereas Fos knock-down using siRNA significantly decreased vitamin C-mediated ASC proliferation. In addition, vitamin C-treated ASCs accelerated the telogen-to-anagen transition in C3H/HeN mice, and conditioned medium from vitamin C-treated ASCs increased the hair length and the Ki67-positive matrix keratinocytes in hair organ culture. Vitamin C increased the mRNA expression of HGF, IGFBP6, VEGF, bFGF, and KGF, which may mediate hair growth promotion. In summary, vitamin C is transported via SVCT2, and increased ASC proliferation is mediated by the MAPK pathway. In addition, vitamin C preconditioning enhanced the hair growth promoting effect of ASCs. Because vitamin C is safe and effective, it could be used to increase the yield and regenerative potential of ASCs.
Journal of Dermatological Science | 2010
HyeRim Shin; Mi Hee Kwack; Seung Hyun Shin; Ji Won Oh; Bo Mi Kang; Ahnsup Andrew Kim; Jin-Oh Kim; Moon Kyu Kim; Jung Chul Kim; Young Kwan Sung
BACKGROUND Recent studies showed that Wnt signaling through the beta-catenin pathway (canonical Wnt signaling) act on mouse dermal papilla cells (DPCs) enabling hair follicles to keep growing. OBJECTIVE To investigate whether human DPCs respond to canonical Wnt signaling and, if so, to identify target genes of Wnt/beta-catenin pathway. METHODS Cultured human DPCs were transiently transfected with the beta-catenin responsive TCF reporter plasmid (pTopflash) and corresponding negative control reporter (pFopflash) to assess the activity of beta-catenin signaling by Wnt3a (one of the canonical Wnts). Immunofluorescence staining was also performed to localize beta-catenin in the presence or absence of Wnt3a. Microarray was carried out using Affymetrix gene chips. RT-PCR analysis and immunoblot were employed to verify microarray data. Cyclic AMP (cAMP) levels were measured using EIA assay after Wnt3a and PGE2 treatment in DPCs. RESULTS Wnt3a significantly stimulated the transcriptional activity of pTopflash but not pFopflash. In line with this, we identified a number of genes that are regulated by Wnt3a. Some of the differently expressed genes including EP2 were confirmed by RT-PCR analysis. Immunoblot further confirmed that EP2 protein is indeed increased by Wnt3a. DPCs pretreated with Wnt3a showed higher responsiveness to PGE2 as measured by cAMP levels. CONCLUSIONS Elucidation of the role of Wnt3a-regulated genes identified in this study including EP2 would help our understanding of hair-induction and maintenance of anagen phase.
Experimental Dermatology | 2013
Mi Hee Kwack; Moon Kyu Kim; Jung Chul Kim; Young Kwan Sung
Findings of recent studies have demonstrated modulation of Wnt/β‐catenin signalling by Wnt5a, which is highly expressed in hair follicular dermal papilla (DP) in vivo. Here, we investigated the question of whether Wnt5a can affect canonical Wnt/β‐catenin signalling in DP cells. Treatment with Wnt5a resulted in attenuation of Wnt3a‐mediated elevation of β‐catenin signalling, which was increased by Wnt5a siRNA transfection in cultured DP cells, as examined by reporter assay. In addition, treatment with Wnt5a resulted in repressed Wnt3a‐mediated expression of Axin2, EP2 and LEF1 in cultured DP cells, whereas Wnt5a siRNA transfection resulted in increased Wnt3a‐mediated expression of the genes in isolated DPs of cultured hair follicles. Moreover, treatment with Wnt5a resulted in attenuation of Wnt3a‐mediated accumulation of β‐catenin in the nucleus in DP cells. Our data strongly suggest that Wnt5a acts as an autocrine factor and attenuates canonical Wnt signalling pathway in human DP cells.
Journal of Dermatological Science | 2010
Bo Mi Kang; Seung Hyun Shin; Mi Hee Kwack; HyeRim Shin; Ji Won Oh; Jin-Oh Kim; Chanil Moon; Cheil Moon; Jung Chul Kim; Moon Kyu Kim; Young Kwan Sung
BACKGROUND Recent studies have shown that erythropoietin (EPO)/erythropoietin receptor (EPOR) signaling exist in both human and mouse hair follicles (HFs). OBJECTIVE To investigate whether dermal papilla cells (DPCs) express functional EPOR and, if so, to investigate effects of EPO on hair shaft growth in cultured human scalp hair follicles and hair growth in mice. METHODS EPOR expression in DPCs and follicular keratinocytes was examined by RT-PCR and immunoblot. Phosphorylation of EPOR signaling pathway mediators by EPO treatment was examined by immunoblot. MTT assay was employed to check cell viability after EPO treatment. Hair shaft growth was measured in the absence or presence of EPO and matrix keratinocyte proliferation was examined by Ki-67 immunostaining in cultured hair follicles. Agarose beads containing EPO were implanted into dorsal skin of C57BL/6 mice to examine effects of EPO on hair growth in vivo. RESULTS EPOR mRNA and protein are expressed in cultured human DPCs. EPOR signaling pathway mediators such as EPOR and Akt are phosphorylated by EPO in DPCs. EPO significantly promoted the growth of DPCs and elongated hair shafts with increased proliferation of matrix keratinocytes in cultured human hair follicles. In addition, EPO not only promoted anagen induction from telogen but also prolonged anagen phase. CONCLUSIONS EPO may modulate hair growth by stimulating DPCs that express functional EPOR.
Journal of Biochemistry and Molecular Biology | 2010
Mi Hee Kwack; Ji Sup Ahn; Moon Kyu Kim; Jung Chul Kim; Young Kwan Sung
In a previous study, we recently claimed that dihydrotestosterone (DHT)-inducible dickkopf-1 (DKK-1) expression is one of the key factors involved in androgen-potentiated balding. We also demonstrated that L-ascorbic acid 2-phosphate (Asc 2-P) represses DHT-induced DKK-1 expression in cultured dermal papilla cells (DPCs). Here, we investigated whether or not L-threonate could attenuate DHT-induced DKK-1 expression. We observed via RT-PCR analysis and enzyme-linked immunosorbent assay that DHT-induced DKK-1 expression was attenuated in the presence of L-threonate. We also found that DHT-induced activation of DKK-1 promoter activity was significantly repressed by L-threonate. Moreover, a co-culture system featuring outer root sheath (ORS) keratinocytes and DPCs showed that DHT inhibited the growth of ORS cells, which was then significantly reversed by L-threonate. Collectively, these results indicate that L-threonate inhibited DKK-1 expression in DPCs and therefore is a good treatment for the prevention of androgen-driven balding.