Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi Jeong Kang is active.

Publication


Featured researches published by Mi Jeong Kang.


Expert Opinion on Drug Metabolism & Toxicology | 2013

The effect of gut microbiota on drug metabolism

Mi Jeong Kang; Hyung Gyun Kim; Jin Sung Kim; Do Gyeong Oh; Yeon Ji Um; Chae Shin Seo; Ji Won Han; Hyun J. Cho; Ghee Hwan Kim; Tae Cheon Jeong; Hye Gwang Jeong

Introduction: Numerous drugs and toxicants must be metabolized to an active form. Metabolic activation by host tissues, such as the liver, has been well studied. However, drug and toxicant metabolism by the intestinal microbiota is an unexplored, but essential, field of study in pharmacology and toxicology. The taxonomic diversity and sheer numbers of the intestinal microbiota, and their capacity to metabolize xenobiotics, underscore the importance of this mode of metabolism. Areas covered: Metabolism by the intestinal microbiota has focused on the natural products of glycosides hydrolyzed by intestinal microbiota enzymes, but not by host tissues. Metabolism of synthetic drugs by the intestinal microbiota has been less-intensively investigated. This review provides an overview of xenobiotic metabolism by the intestinal microbiota of both natural products and synthetic drugs. Expert opinion: Metabolism by the intestinal microbiota might result in a different metabolite profile than that produced by host tissues. This could potentially result in either activation or inactivation of the pharmacological and/or toxicological actions of the compound in question. The contribution of the intestinal microbiota to drug metabolism remains relatively unexplored. Therefore, studies of xenobiotic metabolism by the intestinal microbiota need to be included in new drug development as well as classical studies of host tissue metabolism.


Toxicology Letters | 2012

Biotransformation of geniposide by human intestinal microflora on cytotoxicity against HepG2 cells.

Tilak Khanal; Hyung Gyun Kim; Jae Ho Choi; Minh Truong Do; Min Jeong Kong; Mi Jeong Kang; Kyeumhan Noh; Hee Kyung Yeo; Young Tae Ahn; Wonku Kang; Dong-Hyun Kim; Tae Cheon Jeong; Hye Gwang Jeong

Intestinal microflora (IM) is able to produce toxic and carcinogenic metabolites and induce more potent cytotoxicity against cells than non-metabolites. This study was performed to investigate the cytotoxic responses of geniposide (GS) and its metabolite and to determine the role of metabolism by IM in GS-induced cytotoxicity. Genipin (GP), a GS metabolite, increased cytotoxic effects in cells, but GS did not. Following GS incubation with IM for metabolic activation, increased cytotoxicity was detected compared to GS. Western blot analysis revealed that the activated GS inhibited Bcl-2 expression with a subsequent increase in Bax expression. Likewise, GS activation by IM stimulated caspase-3 and the production of reactive oxygen species (ROS). In addition, activated GS-induced apoptosis was confirmed by apoptosis and ROS assays; N-acetyl-l-cysteine (NAC) suppressed ROS production and apoptotic cell death. Activated GS induced sustained JNK phosphorylation. Moreover, activated GS-induced cell death was reversed by SP600125. Taken together, these findings suggest that human IM is able to metabolize GS into GP, and the related biological activities induce apoptosis through ROS/JNK signaling.


Molecules | 2016

Role of Intestinal Microbiota in Baicalin-Induced Drug Interaction and Its Pharmacokinetics

Keumhan Noh; Youra Kang; Mahesh Raj Nepal; Ki Sun Jeong; Do Gyeong Oh; Mi Jeong Kang; Sangkyu Lee; Wonku Kang; Hye Gwang Jeong; Tae Cheon Jeong

Since many glycoside compounds in natural products are hydrolyzed by intestinal microbiota when administered orally, it is of interest to know whether their pharmacological effects are derived from the glycoside itself or from the aglycone form in vivo. An interesting example is baicalin versus baicalein, the aglycone of baicalin, which is contained in some herbs from Labiatae including Scutellaria baicalensis Georgi and Scutellaria lateriflora Linne. The herbs have been extensively used for treatment of inflammatory diseases in Asia. Although there have been numerous reports regarding the pharmacological effects of baicalin and baicalein in vivo and in vitro, some reports indicated that the glycoside form would hardly be absorbed in the intestine and that it should be hydrolyzed to baicalein in advance for absorption. Therefore, the role of metabolism by intestinal microbiota should also be considered in the metabolism of baicalin. In addition, baicalin contains a glucuronide moiety in its structure, by which baicalin and baicalein show complex pharmacokinetic behaviors, due to the interconversion between them by phase II enzymes in the body. Recently, concerns about drug interaction with baicalin and/or baicalein have been raised, because of the co-administration of Scutellaria species with certain drugs. Herein, we reviewed the role of intestinal microbiota in pharmacokinetic characteristics of baicalin and baicalein, with regards to their pharmacological and toxicological effects.


Molecular Nutrition & Food Research | 2013

Role of intestinal microflora in xenobiotic-induced toxicity.

Hye Gwang Jeong; Mi Jeong Kang; Hyung Gyun Kim; Do Gyeong Oh; Jin Sung Kim; Sang Kyu Lee; Tae Cheon Jeong

In addition to its role in digestion of food in the gastrointestinal tract, the intestinal microflora is also capable of biotransforming numerous drugs. Likewise, the intestinal microflora may significantly modulate xenobiotic-induced toxicity by either activating or inactivating xenobiotics via metabolism. To date, most investigations of xenobiotic metabolism have focused not only on metabolism in host tissues, but the modulation of the pharmacological activity of drugs by the intestinal microflora. Despite its importance, the presumed role of intestinal microflora metabolism in xenobiotic-induced toxicity has been understudied. Therefore, it is appropriate to briefly review our current situation, and state which research in xenobiotic metabolism by intestinal microflora, particularly in the field of toxicology, is needed.


Archives of Pharmacal Research | 2011

Role of metabolism by intestinal bacteria in arbutin-induced toxicity in vitro

Mi Jeong Kang; Hyun Woo Ha; Hyung Gyun Kim; Dae Hun Lee; Min Jeong Kong; Young Tae Ahn; Dong-Hyun Kim; Beom Soo Shin; Wonku Kang; Hye Gwang Jeong; Tae Cheon Jeong

A possible role of metabolism by intestinal bacteria in arbutin-induced toxicity was investigated in mammalian cell cultures. Following an incubation of arbutin with intestinal bacteria, either Bifidobacterium longum HY81 or Bifidobacterium adolescentis, for 24 h, its aglycone hydroquinone could be produced and detected in the bacterial culture media. The bacterial growth was not affected up to 10 mM arbutin in the culture medium. When the toxicity of bacteria cultured medium with arbutin was tested in the HepG2 cell lines, the medium with arbutin was more toxic than either parent arbutin only or bacteria cultured medium without arbutin, indicating that metabolic activation might be required in arbutin-induced toxicity. In addition, bacteria cultured medium with arbutin could suppress LPS and ConA mitogenicity in splenocyte cultures prepared from normal mice. The results indicate that the present toxicity testing system might be applied for assessing the possible role of metabolism by intestinal bacteria in certain chemical-induced toxicity in mammalian cell cultures.


Journal of Toxicology and Environmental Health | 2009

Nephrotoxic Potential and Toxicokinetics of Tetrabromobisphenol a in Rat for Risk Assessment

Mi Jeong Kang; Ju Hyun Kim; Sil Shin; Jae Ho Choi; Sang Kyu Lee; Hyung Sik Kim; Nam Deuk Kim; Geon Wook Kang; Hye Gwang Jeong; Wonku Kang; Young-Jin Chun; Tae Cheon Jeong

Tetrabromobisphenol A (TBBPA), one of the most widely used global brominated flame retardants, is used to improve fire safety of laminates in electrical and electronic equipment. To investigate the nephrotoxic potential of TBBPA and its toxicokinetic profile in rats, single-dose and daily 14-d repeated-dose toxicity studies at 200, 500, or 1000 mg/kg were performed. Several biochemical parameters were analyzed to evaluate nephrotoxicity of TBBPA. High-dose 1000 mg/kg TBBPA significantly elevated renal thiobarbituric acid-reactive substance (TBARS) levels, and superoxide dismutase (SOD) activity was increased at all 3 doses administered. This was associated with no change in the activity of catalase (CAT). Our results suggest that acute 1-d high-dose administration of TBBPA produced transient renal changes at 5 h. Subsequently, TBBPA in serum, urine, and kidney was determined by liquid chromatography–mass spectroscopy (LC/MS). Toxicokinetic studies indicated that TBBPA shows relatively a short half-life (7–9 h) and was eliminated almost completely in feces by 2 d. Based on the results from the 14-d repeated-dose study, TBBPA did not accumulate in the rat, and was eliminated in feces. The present results suggested that TBBPA may not be toxic to kidney, as the chemical is not bioavailable and is not present in renal tissue.


Archives of Pharmacal Research | 2011

Effects of rutaecarpine on the metabolism and urinary excretion of caffeine in rats

Keumhan Noh; Young Min Seo; Sang Kyu Lee; Sudeep R. Bista; Mi Jeong Kang; Yurngdong Jahng; Eun Young Kim; Wonku Kang; Tae Cheon Jeong

Although rutaecarpine, an alkaloid originally isolated from the unripe fruit of Evodia rutaecarpa, has been reported to reduce the systemic exposure of caffeine, the mechanism of this phenomenon is unclear. We investigated the microsomal enzyme activity using hepatic S-9 fraction and the plasma concentration-time profiles and urinary excretion of caffeine and its major metabolites after an oral administration of caffeine in the presence and absence of rutaecarpine in rats. Following oral administration of 80 mg/kg rutaecarpine for three consecutive days, caffeine (20 mg/kg) was given orally. Plasma and urine were collected serially for up to 24 h and the plasma and urine concentrations of caffeine and its metabolites were measured, and compared with those in control rats. The areas under the curve of both caffeine and its three major metabolites (paraxanthine, theophylline, and theobromine) were significantly reduced by rutaecarpine, indicating that caffeine was rapidly converted into the desmethylated metabolites, and that those were also quickly transformed into further metabolites via the hydroxyl metabolites due to the remarkable induction of CYP1A2 and 2E1. The significant induction of ethoxyresorufin O-deethylase, pentoxyresorufin O-depentylase, and p-nitrophenol hydroxylase strongly supported the decrease in caffeine and its major metabolites in plasma, as well as in urine. These results clearly suggest that rutaecarpine increases the metabolism of caffeine, theophylline, theobromine, and paraxanthine by inducing CYP1A2 and CYP2E1 in rats.


Biochemical and Biophysical Research Communications | 2011

Role of metabolism by the human intestinal microflora in arbutin-induced cytotoxicity in HepG2 cell cultures.

Tilak Khanal; Hyung Gyun Kim; Yong Pil Hwang; Min Jeong Kong; Mi Jeong Kang; Hee Kyung Yeo; Dong-Hyun Kim; Tae Cheon Jeong; Hye Gwang Jeong

A possible role for metabolism by the human intestinal microflora in arbutin-induced cytotoxicity was investigated using human hepatoma HepG2 cells. When the cytotoxic effects of arbutin and hydroquinone (HQ), a deglycosylated metabolite of arbutin, were compared, HQ was more toxic than arbutin. Incubation of arbutin with a human fecal preparation could produce HQ. Following incubation of arbutin with a human fecal preparation for metabolic activation, the reaction mixture was filter-sterilized to test its toxic effects on HepG2 cells. The mixture induced cytotoxicity in HepG2 cells in a concentration-dependent manner. In addition, the mixture considerably inhibited expression of Bcl-2 together with an increase in Bax expression. Likewise, activation stimulated cleavage of caspase-3 and production of reactive oxygen species in HepG2 cell cultures. Furthermore, induction of apoptosis by the intestinal microflora reaction mixture was confirmed by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling assay. Taken together, these findings suggest that the human intestinal microflora is capable of metabolizing arbutin to HQ, which can induce apoptosis in mammalian cells.


Archives of Pharmacal Research | 2012

Role of metabolism by human intestinal microflora in geniposide-induced toxicity in HepG2 cells

Mi Jeong Kang; Tilak Khanal; Hyung Gyun Kim; Dae Hun Lee; Hee Kyung Yeo; Yong Sup Lee; Young Tae Ahn; Dong-Hyun Kim; Hye Gwang Jeong; Tae Cheon Jeong

Possible role of metabolism by the intestinal bacteria in geniposide-induced cytotoxicity was investigated in human hepatoma HepG2 cells. Initially, toxic effects of geniposide and its metabolite genipin were compared. Genipin, a deglycosylated form of geniposide, was cytotoxic at the concentrations that geniposide was not. As metabolic activation systems for geniposide, human intestinal bacterial cultures, fecal preparation (fecalase) and intestinal microbial enzyme mix were employed in the present study. When geniposide was incubated with human intestinal bacteria, either Bifidobacterium longum HY8001 or Bacteroides fragilis, for 24 h, the cultured media caused cytotoxicity in HepG2 cells. Fecalase and intestinal enzyme mix were also effective to metabolically activate geniposide to its cytotoxic metabolite. The present results indicated that genipin, a metabolite of geniposide, might be more toxic than geniposide, and that intestinal bacteria might have a role in biotransformation of geniposide to its toxic metabolite. In addition, among three activation systems tested, intestinal microbial enzyme mix would be convenient to use in detecting toxicants requiring metabolic activation by intestinal bacteria.


Journal of Toxicology and Environmental Health | 2010

Role of Metabolism In 1-Bromopropane-Induced Hepatotoxicity in Mice

Sang Kyu Lee; Mi Jeong Kang; Tae Won Jeon; Hyun Woo Ha; Jin Woo Yoo; Gyu Sub Ko; Wonku Kang; Hye Gwang Jeong; Won Seok Lyoo; Tae Cheon Jeong

A possible role of metabolism in 1-bromopropane (1-BP)-induced hepatotoxicity was investigated in male ICR mice. The depletion of glutathione (GSH) by formation of GSH conjugates was associated with increased hepatotoxicity in 1-BP-treated mice. The formation of S-propyl and 2-hydroxypropyl GSH conjugates were identified in the liver following 1-BP treatment. In addition, the formation of reactive metabolites of 1-BP by certain cytochrome P-450 (CYP) may be involved in 1-BP-induced hepatotoxicity. The decreased content of hepatic GSH produced by 1-BP was associated not only with increased activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) but also with elevated levels of hepatic thiobarbituric acid-reactive substance (TBARS) in mice where metabolic enzymes were induced by pretreatment with phenobarbital. In addition, the hepatotoxicity induced by 1-BP was prevented by pretreatment with SKF-525A. Taken together, the formation of reactive metabolites by CYP and depletion of GSH may play important roles in hepatotoxicity induced by 1-BP.

Collaboration


Dive into the Mi Jeong Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Kyu Lee

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju Hyun Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyung Gyun Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge