Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi Kyoung Seo is active.

Publication


Featured researches published by Mi Kyoung Seo.


Neuroscience Research | 2013

Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats.

Zheng Huan Fang; Chan Hong Lee; Mi Kyoung Seo; Hye-Yeon Cho; Jung Goo Lee; Bong Ju Lee; Sung Woo Park; Young Hoon Kim

A growing body of evidence suggests that exercise enhances hippocampal plasticity and function through BDNF up-regulation, which is potentiated by antidepressant treatment. However, little is known about the molecular mechanisms mediating the effect of exercise. The present study investigated the effect of treadmill exercise on PI3K/Akt signaling, which mediates synaptic plasticity in the hippocampus of stressed rats. Rats were subjected to immobilization stress 2h/day for 7 days. The rats were run on the treadmill at a speed of 15m/min, 30min/day, for 5 days. Western blotting was used to assess changes in the levels of phospho-tyr(490)-Trk receptor, phospho-ser(473)-Akt, phospho-ser(9)-GSK-3β, phospho-ser(2448)- mTOR, and phosphor-thr(389)-p70S6K, and in BDNF and various synaptic proteins. Immobilization stress significantly decreased BDNF expression and phosphorylation of Trk receptor, Akt, GSK-3β, mTOR, and p70S6K in the hippocampus of rats; furthermore, synaptophysin, PSD-95, neuroligin 1, and β-neurexin were decreased. Treadmill exercise significantly attenuated the decreased expression of these proteins. Moreover, exercise significantly increased PI3K/Akt signaling in the absence of immobilization stress. These results suggest that treadmill exercise reverses stress-induced changes in the rat hippocampus via an increase in PI3K/Akt signaling and may induce a functional reconnection of hippocampal synapses that mediate antidepressant actions.


Neuroscience Research | 2011

Effects of antipsychotic drugs on BDNF, GSK-3β, and β-catenin expression in rats subjected to immobilization stress.

Sung Woo Park; Vu Thi Phuong; Chan Hong Lee; Jung Goo Lee; Mi Kyoung Seo; Hye Yeon Cho; Zheng Huan Fang; Bong Ju Lee; Young Hoon Kim

Brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3β (GSK-3β), and β-catenin have been reported to be altered in patients with schizophrenia and have been targeted by antipsychotic drugs. Atypical antipsychotics, but not typical antipsychotics, exert neuroprotective effects by regulating these proteins. In this study, we analyzed the effects of the atypical antipsychotic drugs olanzapine and aripiprazole and a typical antipsychotic drug, haloperidol, on the expression of BDNF, phosphorylated GSK-3β, and β-catenin in the hippocampus of rats subjected to immobilization stress. Rats were subjected to immobilization stress 6h/day for 3 weeks. The effects of olanzapine (2 mg/kg), aripiprazole (1.5 mg/kg), and haloperidol (1.0 mg/kg) were determined on BDNF, serine⁹-phosphorylated GSK-3β, and β-catenin expression by Western blotting. Immobilization stress significantly decreased the expression of BDNF, phosphorylated GSK-3β, and β-catenin in the hippocampus. Chronic administration of olanzapine and aripiprazole significantly attenuated the decreased expression of these proteins in the hippocampus of rats caused by immobilization stress, and significantly increased the levels of these proteins even without the immobilization stress. However, chronic haloperidol had no such effect. These results suggest that olanzapine and aripiprazole may exert beneficial effects by upregulating BDNF, phosphorylated GSK-3β, and β-catenin in patients with schizophrenia.


European Neuropsychopharmacology | 2009

Differential effects of aripiprazole and haloperidol on BDNF-mediated signal changes in SH-SY5Y cells ☆

Sung Woo Park; Jung Goo Lee; Eun Kyung Ha; Sang Mi Choi; Hye Yeon Cho; Mi Kyoung Seo; Young Hoon Kim

Recent studies have suggested that first and second generation antipsychotics (FGAs and SGAs) have different neuroprotective effects. However, the molecular mechanisms of SGAs are not fully understood, and investigations into changes in intracellular signaling related to their neuroprotective effects remain scarce. In the present study, we compared the SGA aripiprazole with the FGA haloperidol in SH-SY5Y human neuroblastoma cells via brain-derived neurotrophic factor (BDNF)-mediated signaling, notably BDNF, glycogen synthase kinase-3beta (GSK-3beta), and B cell lymphoma protein-2 (Bcl-2). We examined the effects of aripiprazole (five and 10 microM) and haloperidol (one and 10 microM) on BDNF gene promoter activity in SH-SY5Y cells transfected with a rat BDNF promoter fragment (-108 to +340) linked to the luciferase reporter gene. The changes in BDNF, p-GSK-3beta, and Bcl-2 levels were measured by Western blot analysis. The haloperidol was not associated with a significant difference in BDNF promoter activity. In contrast, aripiprazole was associated with increased BDNF promoter activity only with a dose of 10 microM (93%, p<0.01). Treatment with aripiprazole at 10 microM increased the levels of BDNF by 85%, compared with control levels (p<0.01), whereas haloperidol had no effect. Moreover, cells treated with aripirazole effectively increased the levels of GSK-3beta phosphorylation and Bcl-2 at doses of five and 10 microM (30% and 58% and 31% and 80%, respectively, p<0.05 or p<0.01). However, haloperidol had no effects on p-GSK-3 beta and Bcl-2 expression. This study showed that aripiprazole, but not haloperidol, appeared to offer neuroprotective effects on human neuronal cells. The actions of signaling systems associated with BDNF may represent key targets for both aripiprazole and haloperidol, but the latter may be associated with distinct effects. These differences might be related to the different therapeutic effects of FGAs and SGAs in patients with schizophrenia.


The International Journal of Neuropsychopharmacology | 2014

Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons

Sung Woo Park; Jung Goo Lee; Mi Kyoung Seo; Chan Hong Lee; Hye Yeon Cho; Bong Ju Lee; Wongi Seol; Young Hoon Kim

Recent studies suggest that ketamine produces antidepressant actions via stimulation of mammalian target of rapamycin (mTOR), leading to increased levels of synaptic proteins in the prefrontal cortex. Thus, mTOR activation may be related to antidepressant action. However, the mTOR signalling underlying antidepressant drug action has not been well investigated. The aim of the present study was to determine whether alterations in mTOR signalling were observed following treatment with antidepressant drugs, using ketamine as a positive control. Using Western blotting, we measured changes in the mTOR-mediated proteins and synaptic proteins in rat hippocampal cultures. Dendritic outgrowth was determined by neurite assay. Our findings demonstrated that escitalopram, paroxetine and tranylcypromine significantly increased levels of phospho-mTOR and its down-stream regulators (phospho-4E-BP-1 and phospho-p70S6K); fluoxetine, sertraline and imipramine had no effect. All drugs tested increased up-stream regulators (phospho-Akt and phospho-ERK) levels. Increased phospho-mTOR induced by escitalopram, paroxetine or tranylcypromine was significantly blocked in the presence of specific PI3K, MEK or mTOR inhibitors, respectively. All drugs tested also increased hippocampal dendritic outgrowth and synaptic proteins levels. The mTOR inhibitor, rapamycin, significantly blocked these effects on escitalopram, paroxetine and tranylcypromine whereas fluoxetine, sertraline and imipramine effects were not affected. The effects of escitalopram, paroxetine and tranylcypromine paralleled those of ketamine. This study presents novel in vitro evidence indicating that some antidepressant drugs promote dendritic outgrowth and increase synaptic protein levels through mTOR signalling; however, other antidepressant drugs seem to act via a different pathway. mTOR signalling may be a promising target for the development of new antidepressant drugs.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2010

Effects of olanzapine on brain-derived neurotrophic factor gene promoter activity in SH-SY5Y neuroblastoma cells.

Jung Goo Lee; Hye Yeon Cho; Sung Woo Park; Mi Kyoung Seo; Young Hoon Kim

PURPOSE Atypical antipsychotics have neuroprotective effects, which may be one of the mechanisms for their success in the treatment of schizophrenia. Growing evidence suggest that brain-derived neurotrophic factor (BDNF) is abnormally regulated in patients with schizophrenia, and its expression can be up-regulated by atypical antipsychotics. Atypical antipsychotic drugs may positively regulate transcription of the BDNF gene, but the molecular mechanism of atypical antipsychotic drug action on BDNF gene activity has not been investigated. The aim of the present study was to explore the possible involvement of some intracellular signaling pathways in olanzapine action on BDNF promoter activity. METHODS We examined the effects of olanzapine on BDNF gene promoter activity in SH-SY5Y cells transfected with a rat BDNF promoter fragment (-108 to +340) linked to the luciferase reporter gene. The changes in glycogen synthase kinase-3beta (GSK-3beta) and cAMP response element (CRE) binding protein (CREB) phosphorylation were measured by Western blot analysis. RESULTS Olanzapine treatment (10-100 microM) increased basal BDNF gene promoter activity in a dose-dependent manner and increased protein levels at high dose, and inhibitors of protein kinase A (PKA), H-89 (10 microM), phosphatidylinositol 3-kinase (PI3K), wortmannin (0.01 microM), PKC (protein kinase C), GF109203 (10 microM), calcium/calmodulin kinase II (CaMKII), and KN-93 (20 microM) partially attenuated the stimulatory effect of olanzapine on BDNF promoter activity. In line with these results, a Western blot study showed that olanzapine (100 microM) increased phosphorylated levels of GSK-3beta and CREB, which are notable downstream effectors of the PKA, PI3K, PKC, and CaMKII signaling pathways. CONCLUSIONS These results demonstrate that the up-regulation of olanzapine on BDNF gene transcription is linked with enhancement of CREB-mediated transcription via PKA, PI3K, PKC, and CaMKII signaling pathways, and olanzapine may exert neuroprotective effects through these signaling pathways in neuronal cells.


Synapse | 2013

Effects of antipsychotic drugs on the expression of synaptic proteins and dendritic outgrowth in hippocampal neuronal cultures

Sung Woo Park; Chan Hong Lee; Hye Yeon Cho; Mi Kyoung Seo; Jung Goo Lee; Bong Ju Lee; Wongi Seol; Baik Seok Kee; Young Hoon Kim

Recent evidence has suggested that atypical antipsychotic drugs regulate synaptic plasticity. We investigated whether some atypical antipsychotic drugs (olanzapine, aripiprazole, quetiapine, and ziprasidone) altered the expression of synapse‐associated proteins in rat hippocampal neuronal cultures under toxic conditions induced by B27 deprivation. A typical antipsychotic, haloperidol, was used for comparison. We measured changes in the expression of various synaptic proteins including postsynaptic density protein‐95 (PSD‐95), brain‐derived neurotrophic factor (BDNF), and synaptophysin (SYP). Then we examined whether these drugs affected the dendritic morphology of hippocampal neurons. We found that olanzapine, aripiprazole, and quetiapine, but not haloperidol, significantly hindered the B27 deprivation‐induced decrease in the levels of these synaptic proteins. Ziprasidone did not affect PSD‐95 or BDNF levels, but significantly increased the levels of SYP under B27 deprivation conditions. Moreover, olanzapine and aripiprazole individually significantly increased the levels of PSD‐95 and BDNF, respectively, even under normal conditions, whereas haloperidol decreased the levels of PSD‐95. These drugs increased the total outgrowth of hippocampal dendrites via PI3K signaling, whereas haloperidol had no effect in this regard. Together, these results suggest that the up‐regulation of synaptic proteins and dendritic outgrowth may represent key effects of some atypical antipsychotic drugs but that haloperidol may be associated with distinct actions. Synapse 67:224–234, 2013.


Neuropharmacology | 2014

Effects of antidepressant drugs on synaptic protein levels and dendritic outgrowth in hippocampal neuronal cultures

Mi Kyoung Seo; Chan Hong Lee; Hye Yeon Cho; Jung Goo Lee; Bong Ju Lee; Ji Eun Kim; Wongi Seol; Young Hoon Kim; Sung Woo Park

The alteration of hippocampal plasticity has been proposed to play a critical role in both the pathophysiology and treatment of depression. In this study, the ability of different classes of antidepressant drugs (escitalopram, fluoxetine, paroxetine, sertraline, imipramine, tranylcypromine, and tianeptine) to mediate the expression of synaptic proteins and dendritic outgrowth in rat hippocampal neurons was investigated under toxic conditions induced by B27 deprivation, which causes hippocampal cell death. Postsynaptic density protein-95 (PSD-95), brain-derived neurotrophic factor (BDNF), and synaptophysin (SYP) levels were evaluated using Western blot analyses. Additionally, dendritic outgrowth was examined to determine whether antidepressant drugs affect the dendritic morphology of hippocampal neurons in B27-deprived cultures. Escitalopram, fluoxetine, paroxetine, sertraline, imipramine, tranylcypromine, and tianeptine significantly prevented B27 deprivation-induced decreases in levels of PSD-95, BDNF, and SYP. Moreover, the independent application of fluoxetine, paroxetine, and sertraline significantly increased levels of BDNF under normal conditions. All antidepressant drugs significantly increased the total outgrowth of hippocampal dendrites under B27 deprivation. Specific inhibitors of calcium/calmodulin kinase II (CaMKII), KN-93, protein kinase A (PKA), H-89, or phosphatidylinositol 3-kinase (PI3K), LY294002, significantly decreased the effects of antidepressant drugs on dendritic outgrowth, whereas this effect was observed only with tianeptine for the PI3K inhibitor. Taken together, these results suggest that certain antidepressant drugs can enhance synaptic protein levels and encourage dendritic outgrowth in hippocampal neurons. Furthermore, effects on dendritic outgrowth likely require CaMKII, PKA, or PI3K signaling pathways. The observed effects may be may be due to chronic treatment with antidepressant drugs.


Neuropharmacology | 2011

Differential effects of amisulpride and haloperidol on dopamine D2 receptor-mediated signaling in SH-SY5Y cells

Sung Woo Park; Mi Kyoung Seo; Hye Yeon Cho; Jung Goo Lee; Bong Ju Lee; Wongi Seol; Young Hoon Kim

Dopamine D(2) receptors (D(2)R) are the primary target of antipsychotic drugs and have been shown to regulate Akt/glycogen synthase kinase-3β (GSK-3β) signaling through scaffolding protein β-arrestin 2. Amisulpride, an atypical antipsychotic drug, and haloperidol, a typical antipsychotic drug, are both potent D(2)R antagonists, but their therapeutic effects differ. In the present study, we compared the effects of amisulpride and haloperidol on the β-arrestin 2-mediated Akt/GSK-3β pathway in SH-SY5Y cells. To determine whether these drugs affected neuronal morphology in SH-SY5Y cells, we investigated the effects of amisulpride and haloperidol on neurite outgrowth using immunostaining. We examined the effects of these drugs on Akt and GSK-3β and its well-known downstream regulators, cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 levels using Western blot analysis. Amisulpride, but not haloperidol, was found to enhance neurite outgrowth. Small interfering RNA (siRNA) for β-arrestin 2 knockdown blocked the increase in amisulpride-induced neurite outgrowth. Furthermore, amisulpride increased the levels of Akt and GSK-3β phosphorylation, while haloperidol had no effect. The elevation of Akt phosphorylation induced by amisulpride was reduced by β-arrestin 2 siRNA. Moreover, amisulpride effectively increased the levels of phospho-CREB, BDNF, and Bcl-2. However, haloperidol had no effect on the levels of these proteins. Additionally, wortmannin, a phosphatidylinositol 3-kinase (PI3 K) inhibitor, blocked the stimulatory effect of amisulpride on phosphorylated Akt. Together, these results suggest that regulation of the β-arrestin 2-dependent pathway via blockade of the D(2)R in SH-SY5Y cells is one mechanism underlying the neuroprotective effect of amisulpride, but not haloperidol.


Bipolar Disorders | 2015

Effects of mood‐stabilizing drugs on dendritic outgrowth and synaptic protein levels in primary hippocampal neurons

Sung Woo Park; Jung Goo Lee; Mi Kyoung Seo; Hye Yeon Cho; Chan Hong Lee; Ji Heon Lee; Bong Ju Lee; Jun Hyung Baek; Wongi Seol; Young Hoon Kim

Mood‐stabilizing drugs, such as lithium (Li) and valproate (VPA), are widely used for the treatment of bipolar disorder, a disease marked by recurrent episodes of mania and depression. Growing evidence suggests that Li exerts neurotrophic and neuroprotective effects, leading to an increase in neural plasticity. The present study investigated whether other mood‐stabilizing drugs produce similar effects in primary hippocampal neurons.


Psychiatry Research-neuroimaging | 2015

Effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats subjected to immobilization stress

Mi Kyoung Seo; Chan Hong Lee; Hye Yeon Cho; Young Sun You; Bong Ju Lee; Jung Goo Lee; Sung Woo Park; Young Hoon Kim

The present study examined the effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats with and without immobilization stress. Rats were subjected to immobilization stress 6h/day for 3 weeks. The effects of atypical antipsychotic drugs, olanzapine and aripiprazole, on expression of serine(9)-phosphorylated GSK-3β, β-catenin, BDNF, PSD-95, and synaptophysin were determined by Western blotting. A typical antipsychotic drug, haloperidol, was used for comparison. Immobilization stress significantly decreased the expression of these proteins in the frontal cortex. Chronic administration of olanzapine and aripiprazole significantly attenuated the immobilization stress-induced decrease in the levels of these proteins, whereas haloperidol had no such effect. Additionally, olanzapine and aripiprazole significantly increased levels of phosphorylated GSK-3β under normal conditions without stress, and aripiprazole also increased BDNF levels under this condition. These results indicate that olanzapine and aripiprazole, and, haloperidol, differentially regulate the levels of synapse-associated proteins in the rat frontal cortex. These findings may contribute to explain the neurobiological basis of how olanzapine and aripiprazole up-regulated synapse-associated proteins.

Collaboration


Dive into the Mi Kyoung Seo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chul Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge