Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi-Na Kweon is active.

Publication


Featured researches published by Mi-Na Kweon.


Nature | 2013

Paneth cells as a site of origin for intestinal inflammation

Timon E. Adolph; Michal Tomczak; Lukas Niederreiter; Hyun-Jeong Ko; Janne Böck; Eduardo Martínez-Naves; Jonathan N. Glickman; Markus Tschurtschenthaler; John H. Hartwig; Shuhei Hosomi; Magdalena B. Flak; Jennifer L Cusick; Kenji Kohno; Takao Iwawaki; Susanne Billmann-Born; Tim Raine; Richa Bharti; Ralph Lucius; Mi-Na Kweon; Stefan J. Marciniak; Augustine M. K. Choi; Susan J. Hagen; Stefan Schreiber; Philip Rosenstiel; Arthur Kaser; Richard S. Blumberg

The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn’s disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1HM mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn’s disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1ΔIEC) or autophagy function (Atg16l1ΔIEC or Atg7ΔIEC) in intestinal epithelial cells results in each other’s compensatory engagement, and severe spontaneous Crohn’s-disease-like transmural ileitis if both mechanisms are compromised. Xbp1ΔIEC mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-κB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-κB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn’s disease as a specific disorder of Paneth cells.


Journal of Clinical Investigation | 2003

Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice

Masaya Kobayashi; Mi-Na Kweon; Hirotaka Kuwata; Robert D. Schreiber; Hiroshi Kiyono; Kiyoshi Takeda; Shizuo Akira

Stat3 plays an essential role in IL-10 signaling pathways. A myeloid cell-specific deletion of Stat3 resulted in inflammatory cytokine production and development of chronic enterocolitis with enhanced Th1 responses in mice. In this study, we analyzed the mechanism by which a Stat3 deficiency in myeloid cells led to the induction of chronic enterocolitis in vivo. Even in the absence of Stat1, which is essential for IFN-gamma signaling pathways, Stat3 mutant mice developed chronic enterocolitis. TNF-alpha/Stat3 double-mutant mice developed severe chronic enterocolitis with enhanced Th1 cell development. IL-12p40/Stat3 double-mutant mice, however, showed normal Th1 responses and no inflammatory change in the colon. RAG2/Stat3 double-mutant mice did not develop enterocolitis, either. These findings indicate that overproduction of IL-12p40, which induces potent Th1 responses, is essential for the development of chronic enterocolitis in Stat3 mutant mice. Furthermore, enterocolitis was significantly improved and IFN-gamma production by T cells was reduced in TLR4/Stat3 double-mutant mice, indicating that TLR4-mediated recognition of microbial components triggers aberrant IL-12p40 production by myeloid cells, leading to the development of enterocolitis. Thus, this study clearly established a sequential innate and acquired immune mechanism for the development of Th1-dependent enterocolitis.


Infection and Immunity | 2006

A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity

Shee Eun Lee; Soo Young Kim; Byung Chul Jeong; Young Ran Kim; Soo Jang Bae; Ouk Seon Ahn; Je-Jung Lee; Ho-Chun Song; Jung Mogg Kim; Hyon E. Choy; Sun Sik Chung; Mi-Na Kweon; Joon Haeng Rhee

ABSTRACT Flagellin, the structural component of flagellar filament in various locomotive bacteria, is the ligand for Toll-like receptor 5 (TLR5) of host cells. TLR stimulation by various pathogen-associated molecular patterns leads to activation of innate and subsequent adaptive immune responses. Therefore, TLR ligands are considered attractive adjuvant candidates in vaccine development. In this study, we show the highly potent mucosal adjuvant activity of a Vibrio vulnificus major flagellin (FlaB). Using an intranasal immunization mouse model, we observed that coadministration of the flagellin with tetanus toxoid (TT) induced significantly enhanced TT-specific immunoglobulin A (IgA) responses in both mucosal and systemic compartments and IgG responses in the systemic compartment. The mice immunized with TT plus FlaB were completely protected from systemic challenge with a 200× minimum lethal dose of tetanus toxin. Radiolabeled FlaB administered into the nasal cavity readily reached the cervical lymph nodes and systemic circulation. FlaB bound directly to human TLR5 expressed on cultured epithelial cells and consequently induced NF-κB and interleukin-8 activation. Intranasally administered FlaB colocalized with CD11c as patches in putative dendritic cells and caused an increase in the number of TLR5-expressing cells in cervical lymph nodes. These results indicate that flagellin would serve as an efficacious mucosal adjuvant inducing protective immune responses through TLR5 activation.


Journal of Immunology | 2000

Alternate Mucosal Immune System: Organized Peyer’s Patches Are Not Required for IgA Responses in the Gastrointestinal Tract

Masafumi Yamamoto; Paul D. Rennert; Jerry R. McGhee; Mi-Na Kweon; Shingo Yamamoto; Taeko Dohi; Shigeo Otake; Horst Bluethmann; Kohtaro Fujihashi; Hiroshi Kiyono

The progeny of mice treated with lymphotoxin (LT)-β receptor (LTβR) and Ig (LTβR-Ig) lack Peyer’s patches but not mesenteric lymph nodes (MLN). In this study, we used this approach to determine the importance of Peyer’s patches for induction of mucosal IgA Ab responses in the murine gastrointestinal tract. Immunohistochemical analysis revealed that LTβR-Ig-treated, Peyer’s patch null (PP null) mice possessed significant numbers of IgA-positive (IgA+) plasma cells in the intestinal lamina propria. Further, oral immunization of PP null mice with OVA plus cholera toxin as mucosal adjuvant resulted in Ag-specific mucosal IgA and serum IgG Ab responses. OVA-specific CD4+ T cells of the Th2 type were induced in MLN and spleen of PP null mice. In contrast, when TNF and LT-α double knockout (TNF/LT-α−/−) mice, which lack both Peyer’s patches and MLN, were orally immunized with OVA plus cholera toxin, neither mucosal IgA nor serum IgG anti-OVA Abs were induced. On the other hand, LTβR-Ig- and TNF receptor 55-Ig-treated normal adult mice elicited OVA- and cholera toxin B subunit-specific mucosal IgA responses, indicating that both LT-αβ and TNF/LT-α pathways do not contribute for class switching for IgA Ab responses. These results show that the MLN plays a more important role than had been appreciated until now for the induction of both mucosal and systemic Ab responses after oral immunization. Further, organized Peyer’s patches are not a strict requirement for induction of mucosal IgA Ab responses in the gastrointestinal tract.


Journal of Clinical Investigation | 2000

Systemically derived large intestinal CD4+ Th2 cells play a central role in STAT6-mediated allergic diarrhea

Mi-Na Kweon; Masafumi Yamamoto; Masahiro Kajiki; Ichiro Takahashi; Hiroshi Kiyono

Systemically primed BALB/c mice developed severe diarrhea after repeated oral administration of ovalbumin (OVA). Histological analysis demonstrated that dramatic infiltration of eosinophils and mast cells occurred in the large intestine but not in the small intestine of mice with diarrhea. Interestingly, CD4(+) alphabeta T cells of the large intestine secreted IL-4 and IL-13 at high levels. Identically treated STAT6 gene-disrupted mice failed to develop OVA-induced diarrhea. Further, treatment of BALB/c mice with monoclonal anti-IL-4 antibody prevented the development of allergic diarrhea. An adoptive transfer study showed that systemically primed splenic CD4(+) T cells were preferentially recruited into the large intestine upon exposure to oral OVA. These results strongly suggest that systemically derived CD4(+) alphabeta T cells of the large intestine play a critical role in the onset of Th2-mediated intestinal allergic disorders via STAT6 signal transduction.


PLOS ONE | 2010

1,25-Dihydroxyvitamin D3 Inhibits the Differentiation and Migration of TH17 Cells to Protect against Experimental Autoimmune Encephalomyelitis

Jae-Hoon Chang; Hye-Ran Cha; Dong-Sup Lee; Kyoung Yul Seo; Mi-Na Kweon

Background Vitamin D3, the most physiologically relevant form of vitamin D, is an essential organic compound that has been shown to have a crucial effect on the immune responses. Vitamin D3 ameliorates the onset of the experimental autoimmune encephalomyelitis (EAE); however, the direct effect of vitamin D3 on T cells is largely unknown. Methodology/Principal Findings In an in vitro system using cells from mice, the active form of vitamin D3 (1,25-dihydroxyvitamin D3) suppresses both interleukin (IL)-17-producing T cells (TH17) and regulatory T cells (Treg) differentiation via a vitamin D receptor signal. The ability of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce the amount of IL-2 regulates the generation of Treg cells, but not TH17 cells. Under TH17-polarizing conditions, 1,25(OH)2D3 helps to increase the numbers of IL-10-producing T cells, but 1,25(OH)2D3s negative regulation of TH17 development is still defined in the IL-10−/− T cells. Although the STAT1 signal reciprocally affects the secretion of IL-10 and IL-17, 1,25(OH)2D3 inhibits IL-17 production in STAT1−/− T cells. Most interestingly, 1,25(OH)2D3 negatively regulates CCR6 expression which might be essential for TH17 cells to enter the central nervous system and initiate EAE. Conclusions/Significance Our present results in an experimental murine model suggest that 1,25(OH)2D3 can directly regulate T cell differentiation and could be applied in preventive and therapeutic strategies for TH17-mediated autoimmune diseases.


PLOS Pathogens | 2011

Type I Interferon Signaling Regulates Ly6Chi Monocytes and Neutrophils during Acute Viral Pneumonia in Mice

Sang-Uk Seo; Hyung-Joon Kwon; Hyun-Jeong Ko; Young-Ho Byun; Baik Lin Seong; Satoshi Uematsu; Shizuo Akira; Mi-Na Kweon

Type I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation. IFN-I receptor knockout (Ifnar1 −/−) mice develop significant defects in the infiltration of Ly6Chi monocytes in the lung after influenza infection (A/PR/8/34, H1N1). Ly6Chi monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6Cint monocytes of Ifnar1 −/− mice mainly produce KC for neutrophil influx. As a consequence, Ifnar1 −/− mice recruit more neutrophils after influenza infection than do WT mice. Treatment of IFNAR1 blocking antibody on the WT bone marrow (BM) cells in vitro failed to differentiate into Ly6Chi monocytes. By using BM chimeric mice (WT BM into Ifnar1 −/− and vice versa), we confirmed that IFN-I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes. Of note, WT BM reconstituted Ifnar1 −/− chimeric mice with increased numbers of Ly6Chi monocytes survived longer than influenza-infected Ifnar1 −/− mice. In contrast, WT mice that received Ifnar1 −/− BM cells with alternative Ly6Cint monocytes and increased numbers of neutrophils exhibited higher mortality rates than WT mice given WT BM cells. Collectively, these data suggest that IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung.


Journal of Immunology | 2010

Downregulation of Th17 Cells in the Small Intestine by Disruption of Gut Flora in the Absence of Retinoic Acid

Hye-Ran Cha; Sun-Young Chang; Jae-Hoon Chang; Jae-Ouk Kim; Jin-Young Yang; Chang-Hoon Kim; Mi-Na Kweon

Retinoic acid (RA), a well-known vitamin A metabolite, mediates inhibition of the IL-6-driven induction of proinflammatory Th17 cells and promotes anti-inflammatory regulatory T cell generation in the presence of TGF-β, which is mainly regulated by dendritic cells. To directly address the role of RA in Th17/regulatory T cell generation in vivo, we generated vitamin A-deficient (VAD) mice by continuous feeding of a VAD diet beginning in gestation. We found that a VAD diet resulted in significant inhibition of Th17 cell differentiation in the small intestine lamina propria by as early as age 5 wk. Furthermore, this diet resulted in low mRNA expression levels of IL-17, IFN regulatory factor 4, IL-21, IL-22, and IL-23 without alteration of other genes, such as RORγt, TGF-β, IL-6, IL-25, and IL-27 in the small intestine ileum. In vitro results of enhanced Th17 induction by VAD dendritic cells did not mirror in vivo results, suggesting the existence of other regulation factors. Interestingly, the VAD diet elicited high levels of mucin MUC2 by goblet cell hyperplasia and subsequently reduced gut microbiome, including segmented filamentous bacteria. Much like wild-type mice, the VAD diet-fed MyD88−/−TRIF−/− mice had significantly fewer IL-17–secreting CD4+ T cells than the control diet-fed MyD88−/−TRIF−/− mice. The results strongly suggest that RA deficiency altered gut microbiome, which in turn inhibited Th17 differentiation in the small intestine lamina propria.


Journal of Immunology | 2002

IL-15-Dependent Activation-Induced Cell Death-Resistant Th1 Type CD8αβ+NK1.1+ T Cells for the Development of Small Intestinal Inflammation

Noriyuki Ohta; Takachika Hiroi; Mi-Na Kweon; Naotoshi Kinoshita; Myoung Ho Jang; Tadashi Mashimo; Jun-ichi Miyazaki; Hiroshi Kiyono

To clarify the role of IL-15 at local sites, we engineered a transgenic (Tg) mouse (T3b-IL-15 Tg) to overexpress human IL-15 preferentially in intestinal epithelial cells by the use of T3b-promoter. Although IL-15 was expressed in the entire small intestine (SI) and large intestines of the Tg mice, localized inflammation developed in the proximal SI only. Histopathologic study revealed reduced villus length, marked infiltration of lymphocytes, and vacuolar degeneration of the villus epithelium, beginning at ∼3–4 mo of age. The numbers of CD8+ T cells, especially CD8αβ+ T cells expressing NK1.1, were dramatically increased in the lamina propria of the involved SI. The severity of inflammation corresponded to increased numbers of CD8αβ+NK1.1+ T cells and levels of production of the Th1-type cytokines IFN-γ and TNF-α. Locally overexpressed IL-15 was accompanied by increased resistance of CD8αβ+ NK1.1+ T cells to activation-induced cell death. Our results suggest that chronic inflammation in the SI in this murine model is mediated by dysregulation of epithelial cell-derived IL-15. The model may contribute to understanding the role of CD8+ T cells in human Crohn’s disease involving the SI.


Journal of Immunology | 2009

Sublingual Immunization with Nonreplicating Antigens Induces Antibody-Forming Cells and Cytotoxic T Cells in the Female Genital Tract Mucosa and Protects against Genital Papillomavirus Infection

Nicolas Çuburu; Mi-Na Kweon; Catherine Hervouet; Hye-Ran Cha; Yuk-Ying S. Pang; Jan Holmgren; Konrad Stadler; John T. Schiller; Fabienne Anjuère; Cecil Czerkinsky

We have recently reported that the sublingual (s.l.) mucosa is an efficient site for inducing systemic and mucosal immune responses. In this study, the potential of s.l. immunization to induce remote Ab responses and CD8+ cytotoxic responses in the female genital tract was examined in mice by using a nonreplicating Ag, OVA, and cholera toxin (CT) as an adjuvant. Sublingual administration of OVA and CT induced Ag-specific IgA and IgG Abs in blood and in cervicovaginal secretions. These responses were associated with large numbers of IgA Ab-secreting cells (ASCs) in the genital mucosa. Genital ASC responses were similar in magnitude and isotype distribution after s.l., intranasal, or vaginal immunization and were superior to those seen after intragastric immunization. Genital, but not blood or spleen, IgA ASC responses were inhibited by treatment with anti-CCL28 Abs, suggesting that the chemokine CCL28 plays a major role in the migration of IgA ASC progenitors to the reproductive tract mucosa. Furthermore, s.l. immunization with OVA induced OVA-specific effector CD8+ cytolytic T cells in the genital mucosa, and these responses required coadministration of the CT adjuvant. Furthermore, s.l. administration of human papillomavirus virus-like particles with or without the CT adjuvant conferred protection against genital challenge with human papillomavirus pseudovirions. Taken together, these findings underscore the potential of s.l. immunization as an efficient vaccination strategy for inducing genital immune responses and should impact on the development of vaccines against sexually transmitted diseases.

Collaboration


Dive into the Mi-Na Kweon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sun-Young Chang

International Vaccine Institute

View shared research outputs
Top Co-Authors

Avatar

Hyun-Jeong Ko

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Young Yang

International Vaccine Institute

View shared research outputs
Top Co-Authors

Avatar

Kohtaro Fujihashi

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jerry R. McGhee

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Hye-Ran Cha

International Vaccine Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang-Yuil Kang

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge