Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi Rim Shin is active.

Publication


Featured researches published by Mi Rim Shin.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX

Jung Ro Lee; Seung Sik Lee; Ho Hee Jang; Young Lee; Jin Ho Park; Seong-Cheol Park; Jeong Chan Moon; Soo Kwon Park; Sun Young Kim; Sun Yong Lee; Ho Byoung Chae; Young Jun Jung; Woe Yeon Kim; Mi Rim Shin; Gang-Won Cheong; Min Gab Kim; Kee Ryeon Kang; Kyun Oh Lee; Dae-Jin Yun; Sang Yeol Lee

We found that Arabidopsis AtTDX, a heat-stable and plant-specific thioredoxin (Trx)-like protein, exhibits multiple functions, acting as a disulfide reductase, foldase chaperone, and holdase chaperone. The activity of AtTDX, which contains 3 tetratricopeptide repeat (TPR) domains and a Trx motif, depends on its oligomeric status. The disulfide reductase and foldase chaperone functions predominate when AtTDX occurs in the low molecular weight (LMW) form, whereas the holdase chaperone function predominates in the high molecular weight (HMW) complexes. Because deletion of the TPR domains results in a significant enhancement of AtTDX disulfide reductase activity and complete loss of the holdase chaperone function, our data suggest that the TPR domains of AtTDX block the active site of Trx and play a critical role in promoting the holdase chaperone function. The oligomerization status of AtTDX is reversibly regulated by heat shock, which causes a transition from LMW to HMW complexes with concomitant functional switching from a disulfide reductase and foldase chaperone to a holdase chaperone. Overexpression of AtTDX in Arabidopsis conferred enhanced heat shock resistance to plants, primarily via its holdase chaperone activity.


Plant Physiology | 2009

Heat-Shock and Redox-Dependent Functional Switching of an h-Type Arabidopsis Thioredoxin from a Disulfide Reductase to a Molecular Chaperone

Soo Kwon Park; Young Jun Jung; Jung Ro Lee; Young Lee; Ho Hee Jang; Seung Sik Lee; Jin Ho Park; Sun Young Kim; Jeong Chan Moon; Sun Yong Lee; Ho Byoung Chae; Mi Rim Shin; Ji Hyun Jung; Min Gab Kim; Woe Yeon Kim; Dae-Jin Yun; Kyun Oh Lee; Sang Yeol Lee

A large number of thioredoxins (Trxs), small redox proteins, have been identified from all living organisms. However, many of the physiological roles played by these proteins remain to be elucidated. We isolated a high Mr (HMW) form of h-type Trx from the heat-treated cytosolic extracts of Arabidopsis (Arabidopsis thaliana) suspension cells and designated it as AtTrx-h3. Using bacterially expressed recombinant AtTrx-h3, we find that it forms various protein structures ranging from low and oligomeric protein species to HMW complexes. And the AtTrx-h3 performs dual functions, acting as a disulfide reductase and as a molecular chaperone, which are closely associated with its molecular structures. The disulfide reductase function is observed predominantly in the low Mr forms, whereas the chaperone function predominates in the HMW complexes. The multimeric structures of AtTrx-h3 are regulated not only by heat shock but also by redox status. Two active cysteine residues in AtTrx-h3 are required for disulfide reductase activity, but not for chaperone function. AtTrx-h3 confers enhanced heat-shock tolerance in Arabidopsis, primarily through its chaperone function.


Molecular Plant | 2013

Thioredoxin Reductase Type C (NTRC) Orchestrates Enhanced Thermotolerance to Arabidopsis by Its Redox-Dependent Holdase Chaperone Function

Ho Byoung Chae; Jeong Chan Moon; Mi Rim Shin; Yong Hun Chi; Young Jun Jung; Sun Yong Lee; Ganesh M. Nawkar; Hyun Suk Jung; Jae Kyung Hyun; Woe Yeon Kim; Chang Ho Kang; Dae-Jin Yun; Kyun Oh Lee; Sang Yeol Lee

Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reductase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRC°(E)) resulting in enhanced tolerance to heat shock, whereas NTRC knockout mutant plants (ntrc1) exhibit a temperature sensitive phenotype. To investigate the underlying mechanism of this phenotype, we analyzed the proteins biochemical properties and protein structure. NTRC assembles into homopolymeric structures of varying complexity with functions as a disulfide reductase, a foldase chaperone, and as a holdase chaperone. The multiple functions of NTRC are closely correlated with protein structure. Complexes of higher molecular weight (HMW) showed stronger activity as a holdase chaperone, while low molecular weight (LMW) species exhibited weaker holdase chaperone activity but stronger disulfide reductase and foldase chaperone activities. Heat shock converted LMW proteins into HMW complexes. Mutations of the two active site Cys residues of NTRC into Ser (C217/454S-NTRC) led to a complete inactivation of its disulfide reductase and foldase chaperone functions, but conferred only a slight decrease in its holdase chaperone function. The overexpression of the mutated C217/454S-NTRC provided Arabidopsis with a similar degree of thermotolerance compared with that of NTRC°(E) plants. However, after prolonged incubation under heat shock, NTRC°(E) plants tolerated the stress to a higher degree than C217/454S-NTRC°(E) plants. The results suggest that the heat shock-mediated holdase chaperone function of NTRC is responsible for the increased thermotolerance of Arabidopsis and the activity is significantly supported by NADPH.


New Phytologist | 2011

Heat‐induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana

Jin Ho Park; Sun Yong Lee; Woe Yeon Kim; Young Jun Jung; Ho Byoung Chae; Hyun Suk Jung; Chang Ho Kang; Mi Rim Shin; Sun Young Kim; Mukhamad Su’udi; Dae-Jin Yun; Kyun Oh Lee; Min Gab Kim; Sang Yeol Lee

• This study reports that Arabidopsis thaliana protein serine/threonine phosphatase 5 (AtPP5) plays a pivotal role in heat stress resistance. A high-molecular-weight (HMW) form of AtPP5 was isolated from heat-treated A. thaliana suspension cells. AtPP5 performs multiple functions, acting as a protein phosphatase, foldase chaperone, and holdase chaperone. The enzymatic activities of this versatile protein are closely associated with its oligomeric status, ranging from low oligomeric protein species to HMW complexes. • The phosphatase and foldase chaperone functions of AtPP5 are associated primarily with the low-molecular-weight (LMW) form, whereas the HMW form exhibits holdase chaperone activity. Transgenic over-expression of AtPP5 conferred enhanced heat shock resistance to wild-type A. thaliana and a T-DNA insertion knock-out mutant was defective in acquired thermotolerance. A recombinant phosphatase mutant (H290N) showed markedly increased holdase chaperone activity. • In addition, enhanced thermotolerance was observed in transgenic plants over-expressing H290N, which suggests that the holdase chaperone activity of AtPP5 is primarily responsible for AtPP5-mediated thermotolerance. • Collectively, the results from this study provide the first evidence that AtPP5 performs multiple enzymatic activities that are mediated by conformational changes induced by heat-shock stress.


FEBS Letters | 2012

Dual functions of Arabidopsis sulfiredoxin: Acting as a redox-dependent sulfinic acid reductase and as a redox-independent nuclease enzyme

Yong Hun Chi; Sun Young Kim; In Jung Jung; Mi Rim Shin; Young Jun Jung; Jin Ho Park; Eun Seon Lee; Punyakishore Maibam; Kang-San Kim; Joung Hun Park; Min Ji Kim; Gwang Yong Hwang; Sang Yeol Lee

Based on the fact that the amino acid sequence of sulfiredoxin (Srx), already known as a redox‐dependent sulfinic acid reductase, showed a high sequence homology with that of ParB, a nuclease enzyme, we examined the nucleic acid binding and hydrolyzing activity of the recombinant Srx in Arabidopsis (AtSrx). We found that AtSrx functions as a nuclease enzyme that can use single‐stranded and double‐stranded DNAs as substrates. The nuclease activity was enhanced by divalent cations. Particularly, by point‐mutating the active site of sulfinate reductase, Cys (72) to Ser (AtSrx‐C72S), we demonstrate that the active site of the reductase function of AtSrx is not involved in its nuclease function.


Journal of Biological Chemistry | 2011

Inhibitor of Apoptosis (IAP)-like Protein Lacks a Baculovirus IAP Repeat (BIR) Domain and Attenuates Cell Death in Plant and Animal Systems

Woe Yeon Kim; Sun Yong Lee; Young Jun Jung; Ho Byoung Chae; Ganesh M. Nawkar; Mi Rim Shin; Sun Young Kim; Jin Ho Park; Chang Ho Kang; Yong Hoon Chi; Il Pyung Ahn; Dae-Jin Yun; Kyun Oh Lee; Young-Myeong Kim; Min Gab Kim; Sang Yeol Lee

A novel Arabidopsis thaliana inhibitor of apoptosis was identified by sequence homology to other known inhibitor of apoptosis (IAP) proteins. Arabidopsis IAP-like protein (AtILP) contained a C-terminal RING finger domain but lacked a baculovirus IAP repeat (BIR) domain, which is essential for anti-apoptotic activity in other IAP family members. The expression of AtILP in HeLa cells conferred resistance against tumor necrosis factor (TNF)-α/ActD-induced apoptosis through the inactivation of caspase activity. In contrast to the C-terminal RING domain of AtILP, which did not inhibit the activity of caspase-3, the N-terminal region, despite displaying no homology to known BIR domains, potently inhibited the activity of caspase-3 in vitro and blocked TNF-α/ActD-induced apoptosis. The anti-apoptotic activity of the AtILP N-terminal domain observed in plants was reproduced in an animal system. Transgenic Arabidopsis lines overexpressing AtILP exhibited anti-apoptotic activity when challenged with the fungal toxin fumonisin B1, an agent that induces apoptosis-like cell death in plants. In AtIPL transgenic plants, suppression of cell death was accompanied by inhibition of caspase activation and DNA fragmentation. Overexpression of AtILP also attenuated effector protein-induced cell death and increased the growth of an avirulent bacterial pathogen. The current results demonstrated the existence of a novel plant IAP-like protein that prevents caspase activation in Arabidopsis and showed that a plant anti-apoptosis gene functions similarly in plant and animal systems.


Molecules and Cells | 2012

Molecular and Functional Properties of Three Different Peroxiredoxin Isotypes in Chinese Cabbage

Sun Young Kim; Young Jun Jung; Mi Rim Shin; Jung Hoon Park; Ganesh M. Nawkar; Punyakishore Maibam; Eun Seon Lee; Kang-San Kim; Seol Ki Paeng; Woe Yeon Kim; Kyun Oh Lee; Dae-Jin Yun; Chang Ho Kang; Sang Yeol Lee

Peroxiredoxins (Prxs), which are classified into three isotypes in plants, play important roles in protection systems as peroxidases or molecular chaperones. The three Prx isotypes of Chinese cabbage, namely C1C-Prx, C2C-Prx, and C-PrxII, have recently been identified and characterized. The present study compares their molecular properties and biochemical functions to gain insights into their concerted roles in plants. The three Prx isotype genes were differentially expressed in tissue- and developmental stage-specific manners. The transcript level of the C1C-Prx gene was abundant at the seed stage, but rapidly decreased after imbibitions. In contrast, the C2C-Prx transcript was not detected in the seeds, but its expression level increased at germination and was maintained thereafter. The C-PrxII transcript level was mild at the seed stage, rapidly increased for 10 days after imbibitions, and gradually disappeared thereafter. In the localization analysis using GFP-fusion proteins, the three isotypes showed different cellular distributions. C1C-Prx was localized in the cytosol and nucleus, whereas C2C-Prx and C-Prx were found mainly in the chloroplast and cytosol, respectively. In vitro thiol-dependent antioxidant assays revealed that the relative peroxidase activities of the isotypes were CPrxII > C2C-Prx > C1C-Prx. C1C-Prx and C2C-Prx, but not C-PrxII, prevented aggregation of malate dehydrogenase as a molecular chaperone. Taken together, these results suggest that the three isotypes of Prx play specific roles in the cells in timely and spatially different manners, but they also cooperate with each other to protect the plant.


Biochemical Journal | 2013

Analysis of Arabidopsis thioredoxin-h isotypes identifies discrete domains that confer specific structural and functional properties.

Young Jun Jung; Yong Hun Chi; Ho Byoung Chae; Mi Rim Shin; Eun Seon Lee; Joon-Yung Cha; Seol Ki Paeng; Yuno Lee; Jin Ho Park; Woe Yeon Kim; Chang Ho Kang; Kyun Oh Lee; Keun Woo Lee; Dae-Jin Yun; Sang Yeol Lee

Multiple isoforms of Arabidopsis thaliana h-type thioredoxins (AtTrx-hs) have distinct structural and functional specificities. AtTrx-h3 acts as both a disulfide reductase and as a molecular chaperone. We prepared five representative AtTrx-hs and compared their protein structures and disulfide reductase and molecular chaperone activities. AtTrx-h2 with an N-terminal extension exhibited distinct functional properties with respect to other AtTrx-hs. AtTrx-h2 formed low-molecular-mass structures and exhibited only disulfide reductase activity, whereas the other AtTrx-h isoforms formed high-molecular-mass complexes and displayed both disulfide reductase and molecular chaperone activities. The domains that determine the unique structural and functional properties of each AtTrx-hs protein were determined by constructing a domain-swap between the N- and C-terminal regions of AtTrx-h2 and AtTrx-h3 (designated AtTrx-h-2N3C and AtTrx-h-3N2C respectively), an N-terminal deletion mutant of AtTrx-h2 [AtTrx-h2-N(∆19)] and site-directed mutagenesis of AtTrx-h3. AtTrx-h2-N(∆19) and AtTrx-h-3N2C exhibited similar properties to those of AtTrx-h2, but AtTrx-h-2N3C behaved more like AtTrx-h3, suggesting that the structural and functional specificities of AtTrx-hs are determined by their C-terminal regions. Hydrophobicity profiling and molecular modelling revealed that Ala100 and Ala106 in AtTrx-h3 play critical roles in its structural and functional regulation. When these two residues in AtTrx-h3 were replaced with lysine, AtTrx-h3 functioned like AtTrx-h2. The chaperone function of AtTrx-hs conferred enhanced heat-shock-resistance on a thermosensitive trx1/2-null yeast mutant.


The FASEB Journal | 2015

Stress-driven structural and functional switching of Ypt1p from a GTPase to a molecular chaperone mediates thermo tolerance in Saccharomyces cerevisiae

Chang Ho Kang; Sun Yong Lee; Joung Hun Park; Yuno Lee; Hyun Suk Jung; Yong Hun Chi; Young Jun Jung; Ho Byoung Chae; Mi Rim Shin; Woe Yeon Kim; Dae-Jin Yun; Sang Yeol Lee

Guanosine triphosphatases (GTPases) function as molecular switches in signal transduction pathways that enable cells to respond to extracellular stimuli. Saccharomyces cerevisiae yeast protein two 1 protein (Ypt1p) is a monomelic small GTPase that is essential for endoplasmic reticulum‐to‐Golgi trafficking. By size‐exclusion chromatography, SDS‐PAGE, and native PAGE, followed by immunoblot analysis with an anti‐Ypt1p antibody, we found that Ypt1p structurally changed from low‐molecular‐weight (LMW) forms to high‐molecular‐weight (HMW) complexes after heat shock. Based on our results, Ypt1p exhibited dual functions both as a GTPase and a molecular chaperone, and furthermore, heat shock induced a functional switch from that of a GTPase to a molecular chaperone driven by the structural change from LMW to HMW forms. Subsequently, we found, by using a galactose‐inducible expression system, that conditional overexpression of YPT1 in yeast cells enhanced the thermotolerance of cells by increasing the survival rate at 55°C by ∼60%, compared with the control cells expressing YPT1 in the wild‐type level. Altogether, our results suggest that Ypt1p is involved in the cellular protection process under heat stress conditions. Also, these findings provide new insight into the in vivo roles of small GTP‐binding proteins and have an impact on research and the investigation of human diseases.—Kang, C. H., Lee, S. Y., Park, J. H., Lee, Y., Jung, H. S., Chi, Y. H., Jung, Y. J., Chae, H. B., Shin, M. R., Kim, W. Y., Yun, D.‐J., Lee, S. Y. Stress‐driven structural and functional switching of Ypt1p from a GTPase to a molecular chaperone mediates thermo tolerance in Saccharomyces cerevisiae. FASEB J. 29, 4424‐4434 (2015). www.fasebj.org


Biochemical and Biophysical Research Communications | 2006

The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts

Jeong Chan Moon; Ho Hee Jang; Ho Byoung Chae; Jung Ro Lee; Sun Yong Lee; Young Jun Jung; Mi Rim Shin; Hye Song Lim; Woo Sik Chung; Dae-Jin Yun; Kyun Oh Lee; Sang Yeol Lee

Collaboration


Dive into the Mi Rim Shin's collaboration.

Top Co-Authors

Avatar

Sang Yeol Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Young Jun Jung

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Dae-Jin Yun

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Ho Byoung Chae

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Kyun Oh Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Woe Yeon Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sun Yong Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Chang Ho Kang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Jin Ho Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sun Young Kim

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge