Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi-Ryoung Song is active.

Publication


Featured researches published by Mi-Ryoung Song.


Nature Neuroscience | 2004

FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation.

Mi-Ryoung Song; Anirvan Ghosh

The generation of distinct cell types during development depends on the competence of progenitor populations to differentiate along specific lineages. Here we investigate the mechanisms that regulate competence of rodent cortical progenitors to differentiate into astrocytes in response to ciliary neurotrophic factor (CNTF). We found that fibroblast growth factor 2 (FGF2), which by itself does not induce astrocyte-specific gene expression, regulates the ability of CNTF to induce expression of glial fibrillary acidic protein (GFAP). FGF2 facilitates access of the STAT/CBP (signal transducer and activator of transcription/CRE binding protein) complex to the GFAP promoter by inducing Lys4 methylation and suppressing Lys9 methylation of histone H3 at the STAT binding site. Histone methylation at this site is specific to the cells state of differentiation. In progenitors, the promoter is bound by Lys9-methylated histones, and in astrocytes, it is bound by Lys4-methylated histones, indicating that astrocyte differentiation in vivo involves this switch in chromatin state. Our observations indicate that extracellular signals can regulate access of transcription factors to genomic promoters by local chromatin modification, and thereby regulate developmental competence.


Development | 2009

Islet-to-LMO stoichiometries control the function of transcription complexes that specify motor neuron and V2a interneuron identity

Mi-Ryoung Song; Yunfu Sun; Ami Bryson; Gordon N. Gill; Sylvia M. Evans; Samuel L. Pfaff

LIM transcription factors bind to nuclear LIM interactor (Ldb/NLI/Clim) in specific ratios to form higher-order complexes that regulate gene expression. Here we examined how the dosage of LIM homeodomain proteins Isl1 and Isl2 and LIM-only protein Lmo4 influences the assembly and function of complexes involved in the generation of spinal motor neurons (MNs) and V2a interneurons (INs). Reducing the levels of Islet proteins using a graded series of mutations favored V2a IN differentiation at the expense of MN formation. Although LIM-only proteins (LMOs) are predicted to antagonize the function of Islet proteins, we found that the presence or absence of Lmo4 had little influence on MN or V2a IN specification. We did find, however, that the loss of MNs resulting from reduced Islet levels was rescued by eliminating Lmo4, unmasking a functional interaction between these proteins. Our findings demonstrate that MN and V2a IN fates are specified by distinct complexes that are sensitive to the relative stoichiometries of the constituent factors and we present a model to explain how LIM domain proteins modulate these complexes and, thereby, this binary-cell-fate decision.


Molecular Neurobiology | 2014

Pax6-Dependent Cortical Glutamatergic Neuronal Differentiation Regulates Autism-Like Behavior in Prenatally Valproic Acid-Exposed Rat Offspring

Ki Chan Kim; Dong-Keun Lee; Hyo Sang Go; Pitna Kim; Chang Soon Choi; Ji-Woon Kim; Se Jin Jeon; Mi-Ryoung Song; Chan Young Shin

Imbalance in excitatory/inhibitory signal in the brain has been proposed as one of the main pathological features in autism spectrum disorders, although the underlying cellular and molecular mechanism is unclear yet. Because excitatory/inhibitory imbalance can be induced by aberration in glutamatergic/GABAergic neuronal differentiation, we investigated the mechanism of dysregulated neuronal differentiation between excitatory and inhibitory neurons in the embryonic and postnatal brain of prenatally valproic acid-exposed rat offspring, which is often used as an animal model of autism spectrum disorders. Transcription factor Pax6, implicated in glutamatergic neuronal differentiation, was transiently increased in embryonic cortex by valproate exposure, which resulted in the increased expression of glutamatergic proteins in postnatal brain of offspring. Chromatin immunoprecipitation showed increased acetylated histone binding on Pax6 promoter region, which may underlie the transcriptional up-regulation of Pax6. Other histone deacetylase (HDAC) inhibitors including TSA and SB but not valpromide, which is devoid of HDAC inhibitor activity, induced Pax6 up-regulation. Silencing Pax6 expression in cultured rat primary neural progenitor cells demonstrated that up-regulation of Pax6 plays an essential role in valproate-induced glutamatergic differentiation. Blocking glutamatergic transmission with MK-801 or memantine treatment, and to a lesser extent with MPEP treatment, reversed the impaired social behaviors and seizure susceptibility of prenatally valproate-exposed offspring. Together, environmental factors may contribute to the imbalance in excitatory/inhibitory neuronal activity in autistic brain by altering expression of transcription factors governing glutamatergic/GABAergic differentiation during fetal neural development, in conjunction with the genetic preload.


Molecular and Cellular Neuroscience | 2011

Isl1 Is required for multiple aspects of motor neuron development

Xingqun Liang; Mi-Ryoung Song; ZengGuang Xu; Guillermo M. Lanuza; Yali Liu; Tao Zhuang; Yi-Han Chen; Samuel L. Pfaff; Sylvia M. Evans; Yunfu Sun

The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons.


Developmental Biology | 2012

The mouse Wnt/PCP protein Vangl2 is necessary for migration of facial branchiomotor neurons, and functions independently of Dishevelled

Derrick M. Glasco; Vinoth Sittaramane; Whitney Bryant; Bernd Fritzsch; Anagha Sawant; Anju Paudyal; Michelle Stewart; Philipp Andre; Gonçalo Cadete Vilhais-Neto; Yingzi Yang; Mi-Ryoung Song; Jennifer N. Murdoch

During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in zebrafish, but their roles in neuronal migration in mouse have not been investigated in detail. Therefore, we analyzed FBM neuron migration in mouse looptail (Lp) mutants, in which Vangl2 is inactivated. In Vangl2(Lp/+) and Vangl2(Lp/Lp) embryos, FBM neurons failed to migrate caudally from rhombomere (r) 4 into r6. Although caudal migration was largely blocked, many FBM neurons underwent normal radial migration to the pial surface of the neural tube. In addition, hindbrain patterning and FBM progenitor specification were intact, and FBM neurons did not transfate into other non-migratory neuron types, indicating a specific effect on caudal migration. Since loss-of-function in some zebrafish Wnt/PCP genes does not affect caudal migration of FBM neurons, we tested whether this was also the case in mouse. Embryos null for Ptk7, a regulator of PCP signaling, had severe defects in caudal migration of FBM neurons. However, FBM neurons migrated normally in Dishevelled (Dvl) 1/2 double mutants, and in zebrafish embryos with disrupted Dvl signaling, suggesting that Dvl function is essentially dispensable for FBM neuron caudal migration. Consistent with this, loss of Dvl2 function in Vangl2(Lp/+) embryos did not exacerbate the Vangl2(Lp/+) neuronal migration phenotype. These data indicate that caudal migration of FBM neurons is regulated by multiple components of the Wnt/PCP pathway, but, importantly, may not require Dishevelled function. Interestingly, genetic-interaction experiments suggest that rostral FBM neuron migration, which is normally suppressed, depends upon Dvl function.


Journal of Biological Chemistry | 2012

Axonal Neuropathy-associated TRPV4 Regulates Neurotrophic Factor-derived Axonal Growth

Yongwoo Jang; Jooyoung Jung; Hyungsup Kim; J. H. Oh; Ji Hyun Jeon; Saewoon Jung; Kyung-Tai Kim; Hawon Cho; Dong-Jin Yang; Sung Min Kim; In-Beom Kim; Mi-Ryoung Song; Uhtaek Oh

Background: Because genetic linkage studies identified mutations in TRPV4 in patients with peripheral neuropathies, the function of TRPV4 in peripheral neurons is questioned. Results: TRPV4 was found to promote neurotrophic factor-driven neuritogenesis. Conclusion: TRPV4 mediates neurotrophic factor-driven neuritogenesis in peripheral neurons. Significance: This explains molecular mechanisms underlying neuritogenesis and maintenance of peripheral nerves. Spinal muscular atrophy and hereditary motor and sensory neuropathies are characterized by muscle weakness and atrophy caused by the degenerations of peripheral motor and sensory nerves. Recent advances in genetics have resulted in the identification of missense mutations in TRPV4 in patients with these hereditary neuropathies. Neurodegeneration caused by Ca2+ overload due to the gain-of-function mutation of TRPV4 was suggested as the molecular mechanism for the neuropathies. Despite the importance of TRPV4 mutations in causing neuropathies, the precise role of TRPV4 in the sensory/motor neurons is unknown. Here, we report that TRPV4 mediates neurotrophic factor-derived neuritogenesis in developing peripheral neurons. TRPV4 was found to be highly expressed in sensory and spinal motor neurons in early development as well as in the adult, and the overexpression or chemical activation of TRPV4 was found to promote neuritogenesis in sensory neurons as well as PC12 cells, whereas its knockdown and pharmacologic inhibition had the opposite effect. More importantly, nerve growth factor or cAMP treatment up-regulated the expression of phospholipase A2 and TRPV4. Neurotrophic factor-derived neuritogenesis appears to be regulated by the phospholipase A2-mediated TRPV4 pathway. These findings show that TRPV4 mediates neurotrophic factor-induced neuritogenesis in developing peripheral nerves. Because neurotrophic factors are essential for the maintenance of peripheral nerves, these findings suggest that aberrant TRPV4 activity may lead to some types of pathology of sensory and motor nerves.


Journal of Bacteriology | 2008

Salmonella enterica Serovar Gallinarum Requires ppGpp for Internalization and Survival in Animal Cells

Jae-Ho Jeong; Mi-Ryoung Song; Sang-Ik Park; Kyoung-Oh Cho; Joon Haeng Rhee; Hyon E. Choy

To elucidate the pathogenic mechanism of Salmonella enterica serovar Gallinarum, we examined the expression of the genes encoded primarily in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. These genes were found to be induced as cultures entered stationary phase under high- and low-oxygen growth conditions, as also observed for Salmonella serovar Typhimurium. In contrast, Salmonella serovar Gallinarum in the exponential growth phase most efficiently internalized cultured animal cells. Analysis of mutants defective in SPI-1 genes, SPI-2 genes, and others implicated in early stages of infection revealed that SPI-1 genes were not involved in the internalization of animal cells by Salmonella serovar Gallinarum. Following entry, however, Salmonella serovar Gallinarum was found to reside in LAMP1-positive vacuoles in both phagocytic and nonphagocytic cells, although internalization was independent of SPI-1. A mutation that conferred defects in ppGpp synthesis was the only one found to affect animal cell internalization by Salmonella serovar Gallinarum. It was concluded that Salmonella serovar Gallinarum internalizes animal cells by a mechanism independent of SPI-1 genes but dependent on ppGpp. Intracellular growth also required ppGpp for the transcription of genes encoded in SPI-2.


Glia | 2014

The complex morphology of reactive astrocytes controlled by fibroblast growth factor signaling.

Kyungjoon Kang; Sung-Woong Lee; Jeong Eun Han; Ji Woong Choi; Mi-Ryoung Song

Astrocytes are the most abundant cell‐type of the human brain and play a variety of roles in brain homeostasis and synaptic maturation, under normal conditions. However, astrocytes undergo dramatic pathological changes in response to brain injury, such as reactive gliosis and glial scar formation. Although abnormal hypertrophy and massive proliferation of astrocytes are obvious, the molecular identity and cues that dictate the structural changes in reactive astrocytes remain unclear. This study proposes that fibroblast growth factor (FGF) signaling is responsible for making astrocyte morphology more complex and hypertrophic in response to an inflammatory stimulus such as lipopolysaccharide. Primary astrocytes isolated from perinatal brains developed more branches in the presence of FGF8 or lesser branches in the presence of FGF2. Introduction of the constitutively active form of the FGF receptor 3 (caFGFR3) into the brain increases the structural complexity, with greater glial fibrillary acidic protein level in astrocytes, while overexpression of a dominant‐negative form of FGFR3 (dnFGFR3) reduces it. Treatment of FGF8 facilitated the wound‐healing process of primary astrocytes in vitro by changing their morphology, indicating that the FGF signal may control the responsiveness of astrocytes in injury conditions. Finally, the blockade of FGF signaling by introducing dnFGFR3 at the site of reactive gliosis reduces astrocyte branch formation and minimizes hypertrophic responses during reactive gliosis. Taken together, these results indicate that FGF8–FGFR3 signaling controls structural changes in astrocytes during reactive gliosis, under pathogenic conditions. GLIA 2014;62:1328–1344


Journal of Biological Chemistry | 2013

The E3 Ligase Mind Bomb-1 (Mib1) Modulates Delta-Notch Signaling to Control Neurogenesis and Gliogenesis in the Developing Spinal Cord

Kyungjoon Kang; Donghoon Lee; Seulgi Hong; Sung-Gyoo Park; Mi-Ryoung Song

Background: Mib1 is a ubiquitin ligase that modifies Delta, a ligand for the Notch signaling pathway. Results: Absence of Mib1 results in a reduced number of neural progenitors, spinal interneurons, and astrocytes. Conclusion: Mib1 controls neurogenesis and gliogenesis in the spinal cord. Significance: Novel insights about the role of Mind bomb1 in the regulation of early spinal cord development via Delta signaling are presented. The Notch signaling pathway is essential for neuronal and glial specification during CNS development. Mind bomb-1 (Mib1) is an E3 ubiquitin ligase that ubiquitinates and promotes the endocytosis of Notch ligands. Although Mib1 is essential for transmitting the Notch signal, it is still unclear whether it is a primary regulator of Notch ligand activity in the developing spinal cord. In Mib1 conditional knock-out mice, we observed depletion of spinal progenitors, premature differentiation of neurons, and unbalanced specification of V2 interneurons, all of which mimic the conventional Notch phenotype. In agreement with this, the reduction of progenitors in the absence of Mib1 led to a loss of both astrocytes and oligodendrocytes. Late removal of Mib1 using a drug-inducible system suppressed glial differentiation, suggesting that Mib1 continues to play a role in the formation of late progenitors mainly designated for gliogenesis. Finally, misexpression of Mib1 or Mib1 deletion mutants revealed that the ring domain of Mib1 is required for the specification of V2 interneurons in the chick neural tube. Together, these findings suggest that Mib1 is a major component of the signal-sending cells required to provide Notch ligand activity for specifying neurons and glia in the spinal cord.


Archives of Pharmacal Research | 2007

Moving cell bodies : Understanding the migratory mechanism of facial motor neurons

Mi-Ryoung Song

Facial branchiomotor (FBM) neurons innervate facial musculature to control facial and jaw movement, which is crucial for facial expressions, speaking, and eating. FBM neurons are one of the largest populations among cranial motor neuronal class forming distinct nucleus in the hindbrain. To construct functional FBM neuronal system, a variety of cellular and molecular mechanisms play a role during embryonic development and thereby present a good framework for understanding the principles of neural development. Over the past decade, genetic approaches in mice and zebrafish have provided a better understanding of molecular pathways for FBM neuron development. This review will focus on regulatory mechanisms for cell body movement of FBM neurons, one of the unique features of FBM neuronal development. First, I will describe the basic anatomy of hindbrain, organization of cranial motor neurons, and developmental sequence of FBM neurons in vertebrates. Next, I will focus on the migratory process of FBM neurons in detail in conjunction with recent genetic evidence for underlying regulatory mechanisms, candidate environmental signals, and transcription factors for FBM neuronal development.

Collaboration


Dive into the Mi-Ryoung Song's collaboration.

Top Co-Authors

Avatar

Chul-Seung Park

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyung-Tai Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seulgi Hong

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sung-Gyoo Park

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Samuel L. Pfaff

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

B. K. Cho

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hojae Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyon E. Choy

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joon Haeng Rhee

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge