Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi-Youn Brusniak is active.

Publication


Featured researches published by Mi-Youn Brusniak.


Nature Biotechnology | 2012

A Cross-platform Toolkit for Mass Spectrometry and Proteomics

Matthew C. Chambers; Brendan MacLean; Robert Burke; Dario Amodei; Daniel Ruderman; Steffen Neumann; Laurent Gatto; Bernd Fischer; Brian Pratt; Katherine Hoff; Darren Kessner; Natalie Tasman; Nicholas J. Shulman; Barbara Frewen; Tahmina A Baker; Mi-Youn Brusniak; Christopher Paulse; David M. Creasy; Lisa Flashner; Kian Kani; Chris Moulding; Sean L. Seymour; Lydia M Nuwaysir; Brent Lefebvre; Frank Kuhlmann; Joe Roark; Paape Rainer; Suckau Detlev; Tina Hemenway; Andreas Huhmer

Mass-spectrometry-based proteomics has become an important component of biological research. Numerous proteomics methods have been developed to identify and quantify the proteins in biological and clinical samples1, identify pathways affected by endogenous and exogenous perturbations2, and characterize protein complexes3. Despite successes, the interpretation of vast proteomics datasets remains a challenge. There have been several calls for improvements and standardization of proteomics data analysis frameworks, as well as for an application-programming interface for proteomics data access4,5. In response, we have developed the ProteoWizard Toolkit, a robust set of open-source, software libraries and applications designed to facilitate proteomics research. The libraries implement the first-ever, non-commercial, unified data access interface for proteomics, bridging field-standard open formats and all common vendor formats. In addition, diverse software classes enable rapid development of vendor-agnostic proteomics software. Additionally, ProteoWizard projects and applications, building upon the core libraries, are becoming standard tools for enabling significant proteomics inquiries.


Journal of Proteome Research | 2008

An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data.

Lukas N. Mueller; Mi-Youn Brusniak; D. R. Mani; Ruedi Aebersold

Over the past decade, a series of experimental strategies for mass spectrometry based quantitative proteomics and corresponding computational methodology for the processing of the resulting data have been generated. We provide here an overview of the main quantification principles and available software solutions for the analysis of data generated by liquid chromatography coupled to mass spectrometry (LC-MS). Three conceptually different methods to perform quantitative LC-MS experiments have been introduced. In the first, quantification is achieved by spectral counting, in the second via differential stable isotopic labeling, and in the third by using the ion current in label-free LC-MS measurements. We discuss here advantages and challenges of each quantification approach and assess available software solutions with respect to their instrument compatibility and processing functionality. This review therefore serves as a starting point for researchers to choose an appropriate software solution for quantitative proteomic experiments based on their experimental and analytical requirements.


Nature Methods | 2011

mProphet: automated data processing and statistical validation for large-scale SRM experiments

Lukas Reiter; Oliver Rinner; Paola Picotti; Ruth Hüttenhain; Martin Beck; Mi-Youn Brusniak; Michael O. Hengartner; Ruedi Aebersold

Selected reaction monitoring (SRM) is a targeted mass spectrometric method that is increasingly used in proteomics for the detection and quantification of sets of preselected proteins at high sensitivity, reproducibility and accuracy. Currently, data from SRM measurements are mostly evaluated subjectively by manual inspection on the basis of ad hoc criteria, precluding the consistent analysis of different data sets and an objective assessment of their error rates. Here we present mProphet, a fully automated system that computes accurate error rates for the identification of targeted peptides in SRM data sets and maximizes specificity and sensitivity by combining relevant features in the data into a statistical model.


Science Signaling | 2010

Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast.

Bernd Bodenmiller; Stefanie Wanka; Claudine Kraft; Joerg Urban; David G. Campbell; Patrick G A Pedrioli; Bertran Gerrits; Paola Picotti; Henry H N Lam; Olga Vitek; Mi-Youn Brusniak; Bernd Roschitzki; Chao Zhang; Kevan M. Shokat; Ralph Schlapbach; Alejandro Colman-Lerner; Garry P. Nolan; Alexey I. Nesvizhskii; Matthias Peter; Robbie Loewith; Christian von Mering; Ruedi Aebersold

A system-wide analysis of protein phosphorylation in yeast reveals robustness in the network of kinases and phosphatases. Holistic Approach Protein kinases and phosphatases make attractive targets for therapies. Although various such enzymes have been characterized individually in vitro, an understanding of their roles in vivo, in the context of the entire network of kinases and phosphatases, is lacking. Indeed, inadequate knowledge of the downstream, indirect consequences of targeting a particular enzyme has led to the discontinuation of potential therapies. Bodenmiller et al. (listen to the accompanying Podcast) individually targeted most of the kinases and phosphatases in yeast, and they performed phosphoproteomic analysis of the effects of these deletions or mutations on the cellular phosphorylation network. They found that the network was surprisingly robust to perturbations in individual enzymes and that a large number of changes occurred in phosphoproteins that were not direct substrates of the targeted kinase or phosphatase. This approach should serve as a starting point toward understanding the complexity of phosphorylation regulation in yeast and other organisms. The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery—and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis.


Molecular & Cellular Proteomics | 2008

Targeted Quantitative Analysis of Streptococcus pyogenes Virulence Factors by Multiple Reaction Monitoring

Vinzenz Lange; Johan Malmström; John Didion; Nichole L. King; Björn Johansson; Juliane Schäfer; Jonathan Rameseder; Chee-Hong Wong; Eric W. Deutsch; Mi-Youn Brusniak; Peter Bühlmann; Lars Björck; Bruno Domon; Ruedi Aebersold

In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.


Proteomics | 2012

PASSEL: The PeptideAtlas SRMexperiment library

Terry Farrah; Eric W. Deutsch; Richard Kreisberg; Zhi Sun; David S. Campbell; Luis Mendoza; Ulrike Kusebauch; Mi-Youn Brusniak; Ruth Hüttenhain; Ralph Schiess; Nathalie Selevsek; Ruedi Aebersold; Robert L. Moritz

Public repositories for proteomics data have accelerated proteomics research by enabling more efficient cross‐analyses of datasets, supporting the creation of protein and peptide compendia of experimental results, supporting the development and testing of new software tools, and facilitating the manuscript review process. The repositories available to date have been designed to accommodate either shotgun experiments or generic proteomic data files. Here, we describe a new kind of proteomic data repository for the collection and representation of data from selected reaction monitoring (SRM) measurements. The PeptideAtlas SRM Experiment Library (PASSEL) allows researchers to easily submit proteomic data sets generated by SRM. The raw data are automatically processed in a uniform manner and the results are stored in a database, where they may be downloaded or browsed via a web interface that includes a chromatogram viewer. PASSELenables cross‐analysis of SRMdata, supports optimization of SRMdata collection, and facilitates the review process of SRMdata. Further, PASSELwill help in the assessment of proteotypic peptide performance in a wide array of samples containing the same peptide, as well as across multiple experimental protocols.


Molecular & Cellular Proteomics | 2012

TraML—A Standard Format for Exchange of Selected Reaction Monitoring Transition Lists

Eric W. Deutsch; Matthew C. Chambers; Steffen Neumann; Fredrik Levander; Pierre-Alain Binz; Jim Shofstahl; David S. Campbell; Luis Mendoza; David Ovelleiro; Kenny Helsens; Lennart Martens; Ruedi Aebersold; Robert L. Moritz; Mi-Youn Brusniak

Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring.


BMC Bioinformatics | 2008

Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics

Mi-Youn Brusniak; Bernd Bodenmiller; David S. Campbell; Kelly Cooke; James S. Eddes; Andrew Garbutt; Hollis Lau; Simon Letarte; Lukas N. Mueller; Vagisha Sharma; Olga Vitek; Ning Zhang; Ruedi Aebersold; Julian D. Watts

BackgroundQuantitative proteomics holds great promise for identifying proteins that are differentially abundant between populations representing different physiological or disease states. A range of computational tools is now available for both isotopically labeled and label-free liquid chromatography mass spectrometry (LC-MS) based quantitative proteomics. However, they are generally not comparable to each other in terms of functionality, user interfaces, information input/output, and do not readily facilitate appropriate statistical data analysis. These limitations, along with the array of choices, present a daunting prospect for biologists, and other researchers not trained in bioinformatics, who wish to use LC-MS-based quantitative proteomics.ResultsWe have developed Corra, a computational framework and tools for discovery-based LC-MS proteomics. Corra extends and adapts existing algorithms used for LC-MS-based proteomics, and statistical algorithms, originally developed for microarray data analyses, appropriate for LC-MS data analysis. Corra also adapts software engineering technologies (e.g. Google Web Toolkit, distributed processing) so that computationally intense data processing and statistical analyses can run on a remote server, while the user controls and manages the process from their own computer via a simple web interface. Corra also allows the user to output significantly differentially abundant LC-MS-detected peptide features in a form compatible with subsequent sequence identification via tandem mass spectrometry (MS/MS). We present two case studies to illustrate the application of Corra to commonly performed LC-MS-based biological workflows: a pilot biomarker discovery study of glycoproteins isolated from human plasma samples relevant to type 2 diabetes, and a study in yeast to identify in vivo targets of the protein kinase Ark1 via phosphopeptide profiling.ConclusionThe Corra computational framework leverages computational innovation to enable biologists or other researchers to process, analyze and visualize LC-MS data with what would otherwise be a complex and not user-friendly suite of tools. Corra enables appropriate statistical analyses, with controlled false-discovery rates, ultimately to inform subsequent targeted identification of differentially abundant peptides by MS/MS. For the user not trained in bioinformatics, Corra represents a complete, customizable, free and open source computational platform enabling LC-MS-based proteomic workflows, and as such, addresses an unmet need in the LC-MS proteomics field.


BMC Bioinformatics | 2011

ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry

Mi-Youn Brusniak; Sung-Tat Kwok; Mark Christiansen; David S. Campbell; Lukas Reiter; Paola Picotti; Ulrike Kusebauch; Hector Ramos; Eric W. Deutsch; Jingchun Chen; Robert L. Moritz; Ruedi Aebersold

BackgroundSince its inception, proteomics has essentially operated in a discovery mode with the goal of identifying and quantifying the maximal number of proteins in a sample. Increasingly, proteomic measurements are also supporting hypothesis-driven studies, in which a predetermined set of proteins is consistently detected and quantified in multiple samples. Selected reaction monitoring (SRM) is a targeted mass spectrometric technique that supports the detection and quantification of specific proteins in complex samples at high sensitivity and reproducibility. Here, we describe ATAQS, an integrated software platform that supports all stages of targeted, SRM-based proteomics experiments including target selection, transition optimization and post acquisition data analysis. This software will significantly facilitate the use of targeted proteomic techniques and contribute to the generation of highly sensitive, reproducible and complete datasets that are particularly critical for the discovery and validation of targets in hypothesis-driven studies in systems biology.ResultWe introduce a new open source software pipeline, ATAQS (Automated and Targeted Analysis with Quantitative SRM), which consists of a number of modules that collectively support the SRM assay development workflow for targeted proteomic experiments (project management and generation of protein, peptide and transitions and the validation of peptide detection by SRM). ATAQS provides a flexible pipeline for end-users by allowing the workflow to start or end at any point of the pipeline, and for computational biologists, by enabling the easy extension of java algorithm classes for their own algorithm plug-in or connection via an external web site.This integrated system supports all steps in a SRM-based experiment and provides a user-friendly GUI that can be run by any operating system that allows the installation of the Mozilla Firefox web browser.ConclusionsTargeted proteomics via SRM is a powerful new technique that enables the reproducible and accurate identification and quantification of sets of proteins of interest. ATAQS is the first open-source software that supports all steps of the targeted proteomics workflow. ATAQS also provides software API (Application Program Interface) documentation that enables the addition of new algorithms to each of the workflow steps. The software, installation guide and sample dataset can be found in http://tools.proteomecenter.org/ATAQS/ATAQS.html


Proteomics | 2012

An Assessment of Current Bioinformatic Solutions for Analyzing LC-MS data Acquired by Selected Reaction Monitoring Technology

Mi-Youn Brusniak; Caroline S. Chu; Ulrike Kusebauch; Mark J. Sartain; Julian D. Watts; Robert L. Moritz

Selected reaction monitoring (SRM) is an accurate quantitative technique, typically used for small‐molecule mass spectrometry (MS). SRM has emerged as an important technique for targeted and hypothesis‐driven proteomic research, and is becoming the reference method for protein quantification in complex biological samples. SRM offers high selectivity, a lower limit of detection and improved reproducibility, compared to conventional shot‐gun‐based tandem MS (LC‐MS/MS) methods. Unlike LC‐MS/MS, which requires computationally intensive informatic postanalysis, SRM requires preacquisition bioinformatic analysis to determine proteotypic peptides and optimal transitions to uniquely identify and to accurately quantitate proteins of interest. Extensive arrays of bioinformatics software tools, both web‐based and stand‐alone, have been published to assist researchers to determine optimal peptides and transition sets. The transitions are oftentimes selected based on preferred precursor charge state, peptide molecular weight, hydrophobicity, fragmentation pattern at a given collision energy (CE), and instrumentation chosen. Validation of the selected transitions for each peptide is critical since peptide performance varies depending on the mass spectrometer used. In this review, we provide an overview of open source and commercial bioinformatic tools for analyzing LC‐MS data acquired by SRM.

Collaboration


Dive into the Mi-Youn Brusniak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert L. Moritz

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Mhyre

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

James M. Olson

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Roland K. Strong

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge