Mian Guo
Harbin Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mian Guo.
Neuroscience | 2015
Zhenfeng Jiang; Mian Guo; C. Shi; Haiyang Wang; L. Yao; Lei Liu; Chuncheng Xie; S. Pu; G. LaChaud; Jia Shen; Minwei Zhu; Lili Mu; Haitao Ge; Yu Long; Xudong Wang; Yuejia Song; Jiahang Sun; X. Hou; A. Zarringhalam; S.-H. Park; Hong Shen; Zhiguo Lin
Epileptogenesis is a dynamic process initiated by insults to the brain that is characterized by progressive functional and structural alterations in certain cerebral regions, leading to the appearance of spontaneous recurrent seizures. Within the duration of the trauma to the brain and the appearance of spontaneous recurrent seizures, there is typically a latent period, which may offer a therapeutic window for preventing the emergence of epilepsy. Previous animal studies have shown that curcumin can attenuate acute seizure severity and brain oxidative stress, but the effect of curcumin on epileptogenesis has not been studied. We examined the effect of continued administration of curcumin during the latent period on epileptogenesis and the deleterious consequences of status epilepticus in adult rats in a post-status epilepticus model of temporal lobe epilepsy induced by kainic acid. We demonstrate that, while administration of curcumin treatment during the latent period does not prevent occurrence of spontaneous recurrent seizures after status epilepticus, it can attenuate the severity of spontaneous recurrent seizures and protect against cognitive impairment. Thus, treatment with curcumin during the latent period following status epilepticus is beneficial in modifying epileptogenesis.
Journal of Cancer | 2016
Guangzhi Wang; Mingna Liu; Hongjun Wang; Shan Yu; Zhenfeng Jiang; Jiahang Sun; Ke Han; Jia Shen; Minwei Zhu; Zhiguo Lin; Chuanlu Jiang; Mian Guo
Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future.
Tumor Biology | 2016
Zhenfeng Jiang; Mian Guo; Xiangtong Zhang; Lifen Yao; Jia Shen; Guizhen Ma; Li Liu; Liwei Zhao; Chuncheng Xie; Hongsheng Liang; Haiyang Wang; Minwei Zhu; Li Hu; Yuanyuan Song; Hong Shen; Zhiguo Lin
Glioblastoma multiform is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and progression of GBM are elusive and controversial. The function of tumor suppressor candidate 3 (TUSC3) has not been previously characterized in GBM. TUSC3 was originally identified as part of an enzyme complex involved in N-glycosylation of proteins, but was recently implicated as a potential tumor suppressor gene in a variety of cancer types. In this study, we demonstrated that the expression levels of TUSC3 were downregulated in both GBM tissues and cells, and also found that overexpression of TUSC3 inhibits GBM cell proliferation and invasion. In addition, the effects of increased levels of methylation on the TUSC3 promoter were responsible for decreased expression of TUSC3 in GBM. Finally, we determined that TUSC3 regulates proliferation and invasion of GBM cells by inhibiting the activity of the Akt signaling pathway.
Acta Biochimica et Biophysica Sinica | 2012
Yongzhe Li; Jianjiao Wang; Yongri Zheng; Yan Zhao; Mian Guo; Yang Li; Qiuli Bao; Yu Zhang; Lizhuang Yang; Qingsong Li
Neural precursor cells play important roles in the neocortical development, but the mechanisms of neural progenitor proliferation, neuronal differentiation, and migration, as well as patterning are still unclear. Sox11, one of SoxC family members, has been reported to be essential for embryonic and adult neurogenesis. But there is no report about the roles of Sox11 in corticogenesis. In order to investigate Sox11 function during cortical development, loss of function experiment was performed in this study. Knockdown of Sox11 by Sox11 siRNA constructs resulted in a diminished neuronal differentiation, but enhanced proliferation of intermediate progenitors. Accompanied with the high expression of Sox11 in the postmitotic neurons, but low expression of Sox11 in the dividing neural progenitors, all the observations indicate that Sox11 induces neuronal differentiation during the neocortical development.
Frontiers in Pharmacology | 2017
Jiahang Sun; Xiaoying Gao; Dawei Meng; Yang Xu; Xichun Wang; Xin Gu; Mian Guo; Xiaodong Shao; Hongwen Yan; Chuanlu Jiang; Yongri Zheng
The effects of the existing anti-epileptic drugs are unsatisfactory to almost one third of epileptic patients. MiR-134 antagomirs prevent pilocarpine-induced status epilepticus. In this study, a lithium chloride-pilocarpine-induced status epilepticus model was established and treated with intracerebroventricular injection of antagomirs targeting miR-134 (Ant-134). The Ant-134 treatment significantly improved the performance of rats in Morris water maze tests, inhibited mossy fiber sprouting in the dentate gyrus, and increased the survival neurons in the hippocampal CA1 region. Silencing of miR-134 remarkably decreased malonaldehyde and 4-hydroxynonenal levels and increased superoxide dismutase activity in the hippocampus. The Ant-134 treatment also significantly increased the production of ATP and the activities of mitochondrial respiratory enzyme complexes and significantly decreased the reactive oxygen species generation in the hippocampus compared with the status epilepticus rats. Finally, the Ant-134 treatment remarkably downregulated the hippocampal expressions of autophagy-associated proteins Atg5, beclin-1 and light chain 3B. In conclusion, Ant-134 attenuates epilepsy via inhibiting oxidative stress, improving mitochondrial functions and regulating autophagy in the hippocampus.
Advanced Healthcare Materials | 2018
Shupei Qiao; Yi Liu; Fengtong Han; Mian Guo; Xiaolu Hou; Kangruo Ye; Shuai Deng; Yijun Shen; Yufang Zhao; Haiying Wei; Bing Song; Lifen Yao; Weiming Tian
Transplanted stem cells constitute a new therapeutic strategy for the treatment of neurological disorders. Emerging evidence indicates that a negative microenvironment, particularly one characterized by the acute inflammation/immune response caused by physical injuries or transplanted stem cells, severely impacts the survival of transplanted stem cells. In this study, to avoid the influence of the increased inflammation following physical injuries, an intelligent, double-layer, alginate hydrogel system is designed. This system fosters the matrix metalloproeinases (MMP) secreted by transplanted stem cell reactions with MMP peptide grafted on the inner layer and destroys the structure of the inner hydrogel layer during the inflammatory storm. Meanwhile, the optimum concentration of the arginine-glycine-aspartate (RGD) peptide is also immobilized to the inner hydrogels to obtain more stem cells before arriving to the outer hydrogel layer. It is found that blocking Cripto-1, which promotes embryonic stem cell differentiation to dopamine neurons, also accelerates this process in neural stem cells. More interesting is the fact that neural stem cell differentiation can be conducted in astrocyte-differentiation medium without other treatments. In addition, the system can be adjusted according to the different parameters of transplanted stem cells and can expand on the clinical application of stem cells in the treatment of this neurological disorder.
Cellular Physiology and Biochemistry | 2017
Jiahang Sun; Xiaoying Gao; Dawei Meng; Yang Xu; Xichun Wang; Xin Gu; Mian Guo; Xiaodong Shao; Hongwen Yan; Chuanlu Jiang; Yongri Zheng
Background: MiR-134 is enriched in dendrites of hippocampal neurons and plays crucial roles in the progress of epilepsy. The present study aims to investigate the effects of antagomirs targeting miroRNA-134 (Ant-134) on limk1 expression and the binding of miR-134 and limk1 in experimental seizure. Methods: Status epilepticus (SE) rat model was established by lithium chloride-pilocarpine injection and was treated with Ant-134 by intracerebroventricular injection. Low Mg2+-exposed primary neurons were used as an in vitro model of SE. The expression of miR-134 was determined using real-time PCR. Protein expressions of limk1 and cofilin were determined by Western blotting. Luciferase reporter assay was used to examine the binding between miR-134 and limk1 3’-untranslated region. Results: The expression of miR-134 was markedly enhanced in hippocampus of the SE rats and low Mg2+-exposed neurons. Ant-134 increased the expression of limk1 and reduced the expression of cofilin in the SE hippocampus and Low Mg2+-exposed neurons. In addition, luciferase reporter assay confirmed that miR-134 bound limk1 3’-UTR. MiR-134 overexpression inhibited limk1 mRNA and protein expressions in neurons. Conclusion: Blockage of miR-134 upregulates limk1 expression and downregulated cofilin expression in hippocampus of the SE rats. This mechanism may contribute to the neuroprotective effects of Ant-134.
Oncology Research | 2017
Zhenfeng Jiang; Lifen Yao; Hongge Ma; Panpan Xu; Zhiyan Li; Mian Guo; Jianhang Chen; Hongbo Bao; Shupei Qiao; Yufang Zhao; Jia Shen; Minwei Zhu; Carolyn Meyers; Guizhen Ma; Chuncheng Xie; Li Liu; Haiyang Wang; Wang Zhang; Qi Dong; Hong Shen; Zhiguo Lin
Pyroptosis is a type of proinflammatory programmed cell death mediated by caspase 1 activity and occurs in several types of eukaryotic tumor cells, including gliomas. MicroRNAs (miRNAs), small endogenous noncoding RNAs, have been demonstrated to be advantageous in glioma therapy. However, the question of whether miRNAs regulate pyroptosis in glioma remains unknown. The current study found that caspase 1 expression was substantially increased in both glioma tissues and glioma cell lines, U87 and T98G, while miR-214 expression was significantly downregulated. Luciferase reporter assay recognized caspase 1 as a target gene of miR-214. These findings demonstrate that miR-214 could inhibit cell proliferation and migration through the regulation of pyroptosis intermediated by caspase 1 in glioma U87 and T98G cells and may suggest a novel therapeutic for the intervention of glioma.
Cancer Letters | 2015
Mian Guo; Xiaoming Zhang; Guangzhi Wang; Jiahang Sun; Zhenfeng Jiang; Kevork Khadarian; Shan Yu; Yan Zhao; Chuncheng Xie; Kelvin X. Zhang; Minwei Zhu; Hong Shen; Zhiguo Lin; Chuanlu Jiang; Jia Shen; Yongri Zheng
Biomedicine & Pharmacotherapy | 2015
Jihong Zhang; Xuhai Gong; Kaiyu Tian; Dongkai Chen; Jiahang Sun; Guangzhi Wang; Mian Guo