Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mian Liu is active.

Publication


Featured researches published by Mian Liu.


Journal of Biological Chemistry | 2011

Glycomic Analyses of Mouse Models of Congenital Muscular Dystrophy

Stephanie H. Stalnaker; Kazuhiro Aoki; Jae-Min Lim; Mindy Porterfield; Mian Liu; Jakob S. Satz; Sean Buskirk; Yufang Xiong; Peng Zhang; Kevin P. Campbell; Huaiyu Hu; David Live; Michael Tiemeyer; Lance Wells

Dystroglycanopathies are a subset of congenital muscular dystrophies wherein α-dystroglycan (α-DG) is hypoglycosylated. α-DG is an extensively O-glycosylated extracellular matrix-binding protein and a key component of the dystrophin-glycoprotein complex. Previous studies have shown α-DG to be post-translationally modified by both O-GalNAc- and O-mannose-initiated glycan structures. Mutations in defined or putative glycosyltransferase genes involved in O-mannosylation are associated with a loss of ligand-binding activity of α-DG and are causal for various forms of congenital muscular dystrophy. In this study, we sought to perform glycomic analysis on brain O-linked glycan structures released from proteins of three different knock-out mouse models associated with O-mannosylation (POMGnT1, LARGE (Myd), and DAG1−/−). Using mass spectrometry approaches, we were able to identify nine O-mannose-initiated and 25 O-GalNAc-initiated glycan structures in wild-type littermate control mouse brains. Through our analysis, we were able to confirm that POMGnT1 is essential for the extension of all observed O-mannose glycan structures with β1,2-linked GlcNAc. Loss of LARGE expression in the Myd mouse had no observable effect on the O-mannose-initiated glycan structures characterized here. Interestingly, we also determined that similar amounts of O-mannose-initiated glycan structures are present on brain proteins from α-DG-lacking mice (DAG1) compared with wild-type mice, indicating that there must be additional proteins that are O-mannosylated in the mammalian brain. Our findings illustrate that classical β1,2-elongation and β1,6-GlcNAc branching of O-mannose glycan structures are dependent upon the POMGnT1 enzyme and that O-mannosylation is not limited solely to α-DG in the brain.


Journal of Biological Chemistry | 2008

The Catalytic and Lectin Domains of UDP-GalNAc:Polypeptide α-N-Acetylgalactosaminyltransferase Function in Concert to Direct Glycosylation Site Selection

Jayalakshmi Raman; Timothy A. Fritz; Thomas A. Gerken; Oliver Jamison; David Live; Mian Liu; Lawrence A. Tabak

UDP-GalNAc:polypeptide α-N-Acetylgalactosaminyltransferases (ppGalNAcTs), a family (EC 2.4.1.41) of enzymes that initiate mucin-type O-glycosylation, are structurally composed of a catalytic domain and a lectin domain. Previous studies have suggested that the lectin domain modulates the glycosylation of glycopeptide substrates and may underlie the strict glycopeptide specificity of some isoforms (ppGalNAcT-7 and -10). Using a set of synthetic peptides and glycopeptides based upon the sequence of the mucin, MUC5AC, we have examined the activity and glycosylation site preference of lectin domain deletion and exchange constructs of the peptide/glycopeptide transferase ppGalNAcT-2 (hT2) and the glycopeptide transferase ppGalNAcT-10 (hT10). We demonstrate that the lectin domain of hT2 directs glycosylation site selection for glycopeptide substrates. Pre-steady-state kinetic measurements show that this effect is attributable to two mechanisms, either lectin domain-aided substrate binding or lectin domain-aided product release following glycosylation. We find that glycosylation of peptide substrates by hT10 requires binding of existing GalNAcs on the substrate to either its catalytic or lectin domain, thereby resulting in its apparent strict glycopeptide specificity. These results highlight the existence of two modes of site selection used by these ppGalNAcTs: local sequence recognition by the catalytic domain and the concerted recognition of distal sites of prior glycosylation together with local sequence binding mediated, respectively, by the lectin and catalytic domains. The latter mode may facilitate the glycosylation of serine or threonine residues, which occur in sequence contexts that would not be efficiently glycosylated by the catalytic domain alone. Local sequence recognition by the catalytic domain differs between hT2 and hT10 in that hT10 requires a pre-existing GalNAc residue while hT2 does not.


ACS Chemical Biology | 2012

Deciphering structural elements of mucin glycoprotein recognition.

Andrew Borgert; Jamie Heimburg-Molinaro; Xuezheng Song; Yi Lasanajak; Tongzhong Ju; Mian Liu; Pamela Thompson; Govind Ragupathi; George Barany; David F. Smith; Richard D. Cummings; David Live

Mucin glycoproteins present a complex structural landscape arising from the multiplicity of glycosylation patterns afforded by their numerous serine and threonine glycosylation sites, often in clusters, and with variations in respective glycans. To explore the structural complexities in such glycoconjugates, we used NMR to systematically analyze the conformational effects of glycosylation density within a cluster of sites. This allows correlation with molecular recognition through analysis of interactions between these and other glycopeptides, with antibodies, lectins, and sera, using a glycopeptide microarray. Selective antibody interactions with discrete conformational elements, reflecting aspects of the peptide and disposition of GalNAc residues, are observed. Our results help bridge the gap between conformational properties and molecular recognition of these molecules, with implications for their physiological roles. Features of the native mucin motifs impact their relative immunogenicity and are accurately encoded in the antibody binding site, with the conformational integrity being preserved in isolated glycopeptides, as reflected in the antibody binding profile to array components.


Journal of the American Chemical Society | 2011

Synthetic, Structural, and Biosynthetic Studies of an Unusual Phospho-Glycopeptide Derived from α-Dystroglycan

Kai-For Mo; Tao Fang; Stephanie H. Stalnaker; Pamela S. Kirby; Mian Liu; Lance Wells; Michael Pierce; David Live; Geert-Jan Boons

Aberrant glycosylation of α-dystroglycan (α-DG) results in loss of interactions with the extracellular matrix and is central to the pathogenesis of several disorders. To examine protein glycosylation of α-DG, a facile synthetic approach has been developed for the preparation of unusual phosphorylated O-mannosyl glycopeptides derived from α-DG by a strategy in which properly protected phospho-mannosides are coupled with a Fmoc protected threonine derivative, followed by the use of the resulting derivatives in automated solid-phase glycopeptide synthesis using hyper-acid-sensitive Sieber amide resin. Synthetic efforts also provided a reduced phospho-trisaccharide, and the NMR data of this derivative confirmed the proper structural assignment of the unusual phospho-glycan structure. The glycopeptides made it possible to explore factors that regulate the elaboration of critical glycans. It was established that a glycopeptide having a 6-phospho-O-mannosyl residue is not an acceptor for action by the enzyme POMGnT1, which attaches β(1,2)-GlcNAc to O-mannosyl moietes, whereas the unphosphorylated derivate was readily extended by the enzyme. This finding implies a specific sequence of events in determining the structural fate of the O-glycan. It has also been found that the activity of POMGnT1 is dependent on the location of the acceptor site in the context of the underlying polypeptide/glycopeptide sequence. Conformational analysis by NMR has shown that the O-mannosyl modification does not exert major conformational effect on the peptide backbone. It is, however, proposed that these residues, introduced at the early stages of glycoprotein glycosylation, have an ability to regulate the loci of subsequent O-GalNAc additions, which do exert conformational effects. The studies show that through access to discrete glycopeptide structures, it is possible to reveal complex regulation of O-glycan processing on α-DG that has significant implications both for its normal post-translational maturation, and the mechanisms of the pathologies associated with hypoglycosylated α-DG.


Methods in Enzymology | 2010

Intramolecular glycan-protein interactions in glycoproteins

Adam W. Barb; Andrew Borgert; Mian Liu; George Barany; David Live

Glycoproteins are a major class of glycoconjugates displaying a variety of mutual interactions between glycan and protein moieties that ultimately affect molecular organization. Modulation of the pendant glycan structures is important in tuning the functions of glycoproteins. Here we discuss structural aspects and some of the challenges to studying intramolecular interactions between carbohydrate and protein elements in several forms of O-linked as well as N-linked glycoproteins. These illustrate the importance of the relationship of context to function in protein glycosylation.


Biopolymers | 2008

Conformational consequences of protein glycosylation: Preparation of O-mannosyl serine and threonine building blocks, and their incorporation into glycopeptide sequences derived from α-dystroglycan†

Mian Liu; Andrew Borgert; George Barany; David Live

With the goal to investigate the structural impact of O‐mannosyl glycosylation on α‐dystroglycan, a glycoprotein that has an important role in the extracellular organization of muscle, glycopeptides derived from its mucin‐like sequence have been prepared by solid‐phase peptide synthesis. Two approaches have been explored to obtain needed mannosylated serine and threonine building blocks. With the α‐carboxyl group unprotected, and with tetraaceto‐1‐fluoro‐α‐D‐mannose as the sugar donor, the desired α‐O‐mannosyl‐Fmoc‐Ser/Thr formed, along with mannosyl ester isomers and the species with mannose attached to both hydroxyl and carboxyl functions. Relevant mechanistic questions and stability issues were elucidated. Alternatively, building blocks were made with the α‐carboxyl protected/activated as the pentafluorophenyl (Pfp) ester. Glycopeptides synthesized herein contained 5–9 residues, and featured one, two, and four consecutive Ser and/or Thr residues O‐glycosylated with mannose. Circular dichroism (CD) spectra for Man‐containing glycopeptides recorded in water show them to be not well ordered. For one of the α‐dystroglycan‐derived sequences, the comparative conformational consequences of glycosylation by either Man or GalNAc have been examined by CD and NMR, with both methods showing a more organized structure when GalNAc is present.


Journal of the American Society for Mass Spectrometry | 2009

Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting.

Jessica Saladino; Mian Liu; David Live; Joshua S. Sharp

Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation, which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues.


Journal of Biological Chemistry | 2012

Glycosylation of α-Dystroglycan O-MANNOSYLATION INFLUENCES THE SUBSEQUENT ADDITION OF GalNAc BY UDP-GalNAc POLYPEPTIDE N-ACETYLGALACTOSAMINYLTRANSFERASES

Duy T. Tran; Jae-Min Lim; Mian Liu; Stephanie H. Stalnaker; Lance Wells; Kelly G. Ten Hagen; David Live

Background: Proper glycosylation of α-dystroglycan is a complex process critical for function. Results: Pre-existing O-mannose sites can regulate O-GalNAc addition by the ppGalNAc-Ts. Conclusion: O-Mannosylation has a significant impact on the pattern of another form of glycosylation (O-GalNAc) in α-dystroglycan. Significance: Contributions to disease phenotypes associated with α-dystroglycan O-mannosylation defects may arise from its impact on other types of glycosylation. O-Linked glycosylation is a functionally and structurally diverse type of protein modification present in many tissues and across many species. α-Dystroglycan (α-DG), a protein linked to the extracellular matrix, whose glycosylation status is associated with human muscular dystrophies, displays two predominant types of O-glycosylation, O-linked mannose (O-Man) and O-linked N-acetylgalactosamine (O-GalNAc), in its highly conserved mucin-like domain. The O-Man is installed by an enzyme complex present in the endoplasmic reticulum. O-GalNAc modifications are initiated subsequently in the Golgi apparatus by the UDP-GalNAc polypeptide N-acetylgalactosaminyltransferase (ppGalNAc-T) enzymes. How the presence and position of O-Man influences the action of the ppGalNAc-Ts on α-DG and the distribution of the two forms of glycosylation in this domain is not known. Here, we investigated the interplay between O-Man and the addition of O-GalNAc by examining the activity of the ppGalNAc-Ts on peptides and O-Man-containing glycopeptides mimicking those found in native α-DG. These synthetic glycopeptides emulate intermediate structures, not otherwise readily available from natural sources. Through enzymatic and mass spectrometric methods, we demonstrate that the presence and specific location of O-Man can impact either the regional exclusion or the site of O-GalNAc addition on α-DG, elucidating the factors contributing to the glycosylation patterns observed in vivo. These results provide evidence that one form of glycosylation can influence another form of glycosylation in α-DG and suggest that in the absence of proper O-mannosylation, as is associated with certain forms of muscular dystrophy, aberrant O-GalNAc modifications may occur and could play a role in disease presentation.


Molecules | 2010

Solid-phase synthesis and evaluation of glycopeptide fragments from rat epididymal cysteine-rich secretory protein-1 (Crisp-1).

Mian Liu; David W. Hamilton; George Barany

Three 18-residue peptides with the sequence Glp-Asp-Thr-Thr-Asp-Glu-Trp-Asp-Arg-Asp-Leu-Glu-Asn-Leu-Ser-Thr-Thr-Lys, taken from the N-terminus of the rat epididymal cysteine-rich secretory protein (Crisp-1) that is important in the fertilization process, were prepared by Fmoc solid-phase synthesis using a convergent strategy. These peptides were the parent sequence, plus two possible α-O-linked TN antigen-containing glycopeptides with a Thr(α-D-GalNAc) residue in place of either Thr3 or Thr4. During chain assembly, two deletion peptides [des-Asp2 and des-Thr(Ac3-α-D-GalNAc)] and one terminated peptide [N-acetylated 14-mer] arose, as did several peptides in which aspartimide formation had occurred at each of the four possible positions in the sequence. These by-products totaled ~20% of the desired product; they were recognized by HPLC and ESI-MS and removed during the intermediate purifications. Final products, obtained in 15–21% overall yields, were characterized by HPLC purities and ESI-MS. Circular dichroism (CD) spectra for all three purified peptides, recorded in pure water and in trifluoroethanol−H2O (1:1), revealed that the presence of a sugar moiety does not significantly impact the sampled conformations. Future biological evaluation could elucidate the nature and locus of sugar modification of Crisp-1, and provide insight as to why Crisp-1 protein E binds sperm irreversibly, in contrast to protein D that lacks a sugar near the N-terminus and only binds sperm loosely.


Archive | 2006

Parallel Solid-Phase Synthesis of Mucin-Like Glycopeptides from an α-GalN3 O-Linked Threonine Building Block

Mian Liu; David Live; George Barany

The glycopeptide, Ac-Pro-Thr(alpha-D-GalNAc)-Thr(alpha-D-GalNAc)-Thr(alpha-d-GalNAc)-Pro-Leu-Lys-NH(2) (1), which features three consecutive O-glycosylated Thr residues and mimics a portion of mucin 2, has been prepared by solid-phase synthesis. Seven related, partially glycosylated peptides (2-8) were synthesized as well. This suite of molecules allowed a systematic analysis of synthetic protocols. N(alpha)-(9-Fluorenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosyl)-L-threonine pentafluorophenyl ester [Fmoc-L-Thr(Ac(3)-alpha-D-GalN(3))-OPfp] was used as a building block that coupled efficiently when used in a relatively low molar excess, that is, approximately 1.5 equiv, with N,N-dimethylformamide (DMF) as the solvent. For conversion of the azido group to the N-acetyl function, direct treatment with thioacetic acid was preferred over a two-step procedure involving reduction with dithiothreitol (DTT) followed by N-acetylation. Effective O-deacetylation of 1-8 in solution was achieved by treatment with sodium methoxide (10-15 mM; approximately 5 equiv) in methanol. On-resin deacetylation techniques were also examined, using sodium methoxide (6-10 mM) in DMF-methanol (17:3) (for 4 and 11) or hydrazine (70 mM) in methanol (for 8). The more convenient on-resin technique in DMF-methanol gave yields similar to solution conditions, and promises to be widely useful for solid-phase glycopeptide synthesis. HPLC profiles showed that free glycopeptides elute earlier than the corresponding O-acetylated derivatives, and that retention times vary systematically with the number of sugar moieties. (1)H NMR studies carried out in water showed an increase in conformational organization of glycopeptides with increased density of glycosylation.

Collaboration


Dive into the Mian Liu's collaboration.

Top Co-Authors

Avatar

David Live

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Govind Ragupathi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge