Miao-Hsueh Chen
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miao-Hsueh Chen.
Genes & Development | 2009
Miao-Hsueh Chen; Christopher W. Wilson; Ya-Jun Li; Kelvin King Lo Law; Chi-Sheng Lu; Rhodora Gacayan; Xiaoyun Zhang; Chi-chung Hui; Pao-Tien Chuang
A central question in Hedgehog (Hh) signaling is how evolutionarily conserved components of the pathway might use the primary cilium in mammals but not fly. We focus on Suppressor of fused (Sufu), a major Hh regulator in mammals, and reveal that Sufu controls protein levels of full-length Gli transcription factors, thus affecting the production of Gli activators and repressors essential for graded Hh responses. Surprisingly, despite ciliary localization of most Hh pathway components, regulation of Gli protein levels by Sufu is cilium-independent. We propose that Sufu-dependent processes in Hh signaling are evolutionarily conserved. Consistent with this, Sufu regulates Gli protein levels by antagonizing the activity of Spop, a conserved Gli-degrading factor. Furthermore, addition of zebrafish or fly Sufu restores Gli protein function in Sufu-deficient mammalian cells. In contrast, fly Smo is unable to translocate to the primary cilium and activate the mammalian Hh pathway. We also uncover a novel positive role of Sufu in regulating Hh signaling, resulting from its control of both Gli activator and repressor function. Taken together, these studies delineate important aspects of cilium-dependent and cilium-independent Hh signal transduction and provide significant mechanistic insight into Hh signaling in diverse species.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Hai Song; Erica Yao; Chuwen Lin; Rhodora Gacayan; Miao-Hsueh Chen; Pao-Tien Chuang
Pulmonary neuroendocrine cells (PNECs) are proposed to be the first specialized cell type to appear in the lung, but their ontogeny remains obscure. Although studies of PNECs have suggested their involvement in a number of lung functions, neither their in vivo significance nor the molecular mechanisms underlying them have been elucidated. Importantly, PNECs have long been speculated to constitute the cells of origin of human small-cell lung cancer (SCLC) and recent mouse models support this hypothesis. However, a genetic system that permits tracing the early events of PNEC transformation has not been available. To address these key issues, we developed a genetic tool in mice by introducing a fusion protein of Cre recombinase and estrogen receptor (CreER) into the calcitonin gene-related peptide (CGRP) locus that encodes a major peptide in PNECs. The CGRPCreER mouse line has enabled us to manipulate gene activity in PNECs. Lineage tracing using this tool revealed the plasticity of PNECs. PNECs can be colabeled with alveolar cells during lung development, and following lung injury, PNECs can contribute to Clara cells and ciliated cells. Contrary to the current model, we observed that elimination of PNECs has no apparent consequence on Clara cell recovery. We also created mouse models of SCLC in which CGRPCreER was used to ablate multiple tumor suppressors in PNECs that were simultaneously labeled for following their fate. Our findings suggest that SCLC can originate from differentiated PNECs. Together, these studies provide unique insight into PNEC lineage and function and establish the foundation of investigating how PNECs contribute to lung homeostasis, injury/repair, and tumorigenesis.
Molecular and Cellular Biology | 2005
Miao-Hsueh Chen; Nan Gao; Takatoshi Kawakami; Pao-Tien Chuang
ABSTRACT Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. To understand how a single Hh signal is capable of generating distinct readouts in Hh-responsive cells requires elucidation of the signal transduction cascade at the molecular level. Key components that mediate Hh signal transduction downstream of the receptor include Fused (Fu), Suppressor of fused (Sufu), and Costal-2 (Cos2) or the vertebrate homologs Kif27/Kif7. Studies with both invertebrates and vertebrates have led to a model in which a protein complex composed of Fu, Sufu, and Cos2 controls the processing, activity, and subcellular distribution of the Ci/Gli transcription factors responsible for Hh target gene activation. These converging results obtained with different species reaffirm the prevailing view of pathway conservation during evolution. Genetic studies of Fu, Sufu, and Kif27/Kif7 in mice are required to provide further verification of Hh pathway conservation. To this end, we generated a gene-targeted allele of Fu in mice. Surprisingly, our analysis indicates that Fu-deficient mice do not exhibit any embryonic phenotypes indicative of perturbed Hh signaling. This could be due to either functional redundancy or Hh pathway divergence and clearly indicates greater complexity of Hh signaling in vertebrates.
PLOS ONE | 2009
Christopher W. Wilson; Miao-Hsueh Chen; Pao-Tien Chuang
Activation of Hedgehog (Hh) signaling requires the transmembrane protein Smoothened (Smo), a member of the G-protein coupled receptor superfamily. In mammals, Smo translocates to the primary cilium upon binding of Hh ligands to their receptor, Patched (Ptch1), but it is unclear if ciliary trafficking of Smo is sufficient for pathway activation. Here, we demonstrate that cyclopamine and jervine, two structurally related inhibitors of Smo, force ciliary translocation of Smo. Treatment with SANT-1, an unrelated Smo antagonist, abrogates cyclopamine- and jervine-mediated Smo translocation. Further, activation of protein kinase A, either directly or through activation of Gαs, causes Smo to translocate to a proximal region of the primary cilium. We propose that Smo adopts multiple inactive and active conformations, which influence its localization and trafficking on the primary cilium.
Journal of Biological Chemistry | 2005
Shao H. Yang; Anuraag Shrivastav; Cynthia Kosinski; Rajendra K. Sharma; Miao-Hsueh Chen; Luc G. Berthiaume; Luanne L. Peters; Pao-Tien Chuang; Stephen G. Young; Martin O. Bergo
N-Myristoyltransferase (NMT) transfers myristate to an amino-terminal glycine of many eukaryotic proteins. In yeast, worms, and flies, this enzyme is essential for viability of the organism. Humans and mice possess two distinct but structurally similar enzymes, NMT1 and NMT2. These two enzymes have similar peptide specificities, but no one has examined the functional importance of the enzymes in vivo. To address this issue, we performed both genetic and biochemical studies. Northern blots with RNA from adult mice and in situ hybridization studies of day 13.5 embryos revealed widespread expression of both Nmt1 and Nmt2. To determine whether the two enzymes are functionally redundant, we generated Nmt1-deficient mice carrying a β-galactosidase marker gene. β-Galactosidase staining of tissues from heterozygous Nmt1-deficient (Nmt1+/–) mice and embryos confirmed widespread expression of Nmt1. Intercrosses of Nmt1+/– mice yielded no viable homozygotes (Nmt1–/–), and heterozygotes were born at a less than predicted frequency. Nmt1–/– embryos died between embryonic days 3.5 and 7.5. Northern blots revealed lower levels of Nmt2 expression in early development than at later time points, a potential explanation for the demise of Nmt1–/– embryos. To explore this concept, we generated Nmt1–/– embryonic stem (ES) cells. The Nmt2 mRNA could be detected in Nmt1–/– ES cells, but the total NMT activity levels were reduced by ∼95%, suggesting that Nmt2 contributes little to total enzyme activity levels in these early embryo cells. The Nmt1–/– ES cells were functionally abnormal; they yielded small embryoid bodies in in vitro differentiation experiments and did not contribute normally to organogenesis in chimeric mice. We conclude that Nmt1 is not essential for the viability of mammalian cells but is required for development, likely because it is the principal N-myristoyltransferase in early embryogenesis.
Journal of Clinical Investigation | 2014
Da-Hai Yu; Robert A. Waterland; Pumin Zhang; Deborah Schady; Miao-Hsueh Chen; Yongtao Guan; Manasi Gadkari; Lanlan Shen
Cancer has long been viewed as a genetic disease; however, epigenetic silencing as the result of aberrant promoter DNA methylation is frequently associated with cancer development, suggesting an epigenetic component to the disease. Nonetheless, it has remained unclear whether an epimutation (an aberrant change in epigenetic regulation) can induce tumorigenesis. Here, we exploited a functionally validated cis-acting regulatory element and devised a strategy to induce developmentally regulated genomic targeting of DNA methylation. We used this system to target DNA methylation within the p16(Ink4a) promoter in mice in vivo. Engineered p16(Ink4a) promoter hypermethylation led to transcriptional suppression in somatic tissues during aging and increased the incidence of spontaneous cancers in these mice. Further, mice carrying a germline p16(Ink4a) mutation in one allele and a somatic epimutation in the other had accelerated tumor onset and substantially shortened tumor-free survival. Taken together, these results provide direct functional evidence that p16(Ink4a) epimutation drives tumor formation and malignant progression and validate a targeted methylation approach to epigenetic engineering.
Developmental Cell | 2014
Olena Zhulyn; Danyi Li; Steven Deimling; Niki Alizadeh Vakili; Rong Mo; Vijitha Puviindran; Miao-Hsueh Chen; Pao-Tien Chuang; Sevan Hopyan; Chi-chung Hui
The patterning and growth of the embryonic vertebrate limb is dependent on Sonic hedgehog (Shh), a morphogen that regulates the activity of Gli transcription factors. However, Shh expression is not observed during the first 12 hr of limb development. During this phase, the limb bud is prepatterned into anterior and posterior regions through the antagonistic actions of transcription factors Gli3 and Hand2. We demonstrate that precocious activation of Shh signaling during this early phase interferes with the Gli3-dependent specification of anterior progenitors, disturbing establishment of signaling centers and normal outgrowth of the limb. Our findings illustrate that limb development requires a sweet spot in the level and timing of pathway activation that allows for the Shh-dependent expansion of posterior progenitors without interfering with early prepatterning functions of Gli3/Gli3R or specification of anterior progenitors.
Genome Biology | 2015
Da-Hai Yu; Manasi Gadkari; Quan Zhou; Shiyan Yu; Nan Gao; Yongtao Guan; Deborah Schady; Tony Roshan; Miao-Hsueh Chen; Eleonora Laritsky; Zhongqi Ge; Hui Wang; Rui Chen; Caroline Westwater; Lynn Bry; Robert A. Waterland; Chelsea Moriarty; Cindy S. Hwang; Alton Swennes; Sean R. Moore; Lanlan Shen
BackgroundDNA methylation is an epigenetic mechanism central to development and maintenance of complex mammalian tissues, but our understanding of its role in intestinal development is limited.ResultsWe use whole genome bisulfite sequencing, and find that differentiation of mouse colonic intestinal stem cells to intestinal epithelium is not associated with major changes in DNA methylation. However, we detect extensive dynamic epigenetic changes in intestinal stem cells and their progeny during the suckling period, suggesting postnatal epigenetic development in this stem cell population. We find that postnatal DNA methylation increases at 3′ CpG islands (CGIs) correlate with transcriptional activation of glycosylation genes responsible for intestinal maturation. To directly test whether 3′ CGI methylation regulates transcription, we conditionally disrupted two major DNA methyltransferases, Dnmt1 or Dnmt3a, in fetal and adult intestine. Deficiency of Dnmt1 causes severe intestinal abnormalities in neonates and disrupts crypt homeostasis in adults, whereas Dnmt3a loss was compatible with intestinal development. These studies reveal that 3′ CGI methylation is functionally involved in the regulation of transcriptional activation in vivo, and that Dnmt1 is a critical regulator of postnatal epigenetic changes in intestinal stem cells. Finally, we show that postnatal 3′ CGI methylation and associated gene activation in intestinal epithelial cells are significantly altered by germ-free conditions.ConclusionsOur results demonstrate that the suckling period is critical for epigenetic development of intestinal stem cells, with potential important implications for lifelong gut health, and that the gut microbiome guides and/or facilitates these postnatal epigenetic processes.
Molecular and Cellular Biology | 2013
Da Hai Yu; Carol B. Ware; Robert A. Waterland; Jiexin Zhang; Miao-Hsueh Chen; Manasi Gadkari; Govindarajan Kunde-Ramamoorthy; Lagina M. Nosavanh; Lanlan Shen
ABSTRACT During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3′ CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3′ CGI methylation confers tissue- and cell-type-specific gene activation in vivo. Importantly, luciferase reporter assays provided evidence that 3′ CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3′ CGI methylation in developmental gene regulation.
Proceedings of the National Academy of Sciences of the United States of America | 2015
La Gina Nosavanh; Da Hai Yu; Eric J. Jaehnig; Qiang Tong; Lanlan Shen; Miao-Hsueh Chen
Significance The function of brown adipose tissue (BAT), which converts chemical energy into heat, has been widely characterized, but how BAT forms and what signaling molecules regulate its formation are largely unknown. In this paper, we report that Hedgehog (Hh) signaling inhibits the formation of BAT during development. Activation of Hh signaling, specifically in the BAT of mice during development, resulted in the loss of interscapular BAT due to the impairment of brown-preadipocyte differentiation. Remarkably, the majority of the BAT cells in the neck were replaced by skeletal muscle-like cells in embryos with elevated Hh activity. These findings indicate that Hh is an essential regulator of BAT development and that developing BAT depots respond differentially to Hh signaling. Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to Hedgehog (Hh) signaling. Furthermore, cell-autonomous activation of Hh signaling blocks early brown-preadipocyte differentiation, inhibits BAT formation in vivo, and results in replacement of neck BAT with poorly differentiated skeletal muscle. Finally, we show that Hh signaling inhibits BAT formation partially through up-regulation of chicken ovalbumin upstream promoter transcription factor II (COUP-TFII). Taken together, our studies uncover a previously unidentified role for Hh as an inhibitor of BAT development.