Miao-Ling Lu
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miao-Ling Lu.
Journal of the Atmospheric Sciences | 2005
Miao-Ling Lu; John H. Seinfeld
A total of 98 three-dimensional large-eddy simulations (LESs) of marine stratocumulus clouds covering both nighttime and daytime conditions were performed to explore the response of cloud optical depth (τ) to various aerosol number concentrations (Na = 50–2500 cm−3) and the covarying meteorological conditions (large-scale divergence rate and SST). The idealized First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) and the Atlantic Stratocumulus Transition Experiment (ASTEX) Lagrangian 1 sounding profiles were used to represent the lightly and heavily drizzling cases, respectively. The first and second aerosol indirect effects are identified. Through statistical analysis, τ is found be to both positively correlated with Na and cloud liquid water path (LWP) with a higher correlation associated with LWP, which is predominantly regulated by large-scale subsidence and SST. Clouds with high LWP occur under low SST or weak large-scale subsidence. Introduction of a small amount of giant sea salt aerosol into the simulation lowers the number of cloud droplets activated, results in larger cloud droplets, and initiates precipitation for nondrizzling polluted clouds or precedes the precipitation process for drizzling clouds. However, giant sea salt aerosol is found to have a negligible effect on τ for lightly precipitating cases, while resulting in a relative reduction of τ of 3%–77% (increasing with Na, for Na = 1000–2500 cm−3) for heavily precipitating cases, suggesting that the impact of giant sea salt is only important for moist and potentially convective clouds. Finally, a regression analysis of the simulations shows that the second indirect effect is more evident in clear than polluted cases. The second indirect effect is found to enhance (reduce) the overall aerosol indirect effect for heavily (lightly) drizzling clouds; that is, τ is larger (smaller) for the same relative change in Na than considering the Twomey (first indirect) effect alone. The aerosol indirect effect (on τ) is lessened in the daytime afternoon conditions and is dominated by the Twomey effect; however, the effect in the early morning is close but slightly smaller than that in the nocturnal run. Diurnal variations of the aerosol indirect effect should be considered to accurately assess its magnitude.
Journal of Geophysical Research | 2008
Miao-Ling Lu; Graham Feingold; Haflidi H. Jonsson; Patrick Y. Chuang; Harmony Gates; John H. Seinfeld
Aerosol-cloud relationships are derived from 14 warm continental cumuli cases sampled during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. Cloud droplet number concentration is clearly proportional to the subcloud accumulation mode aerosol number concentration. An inverse correlation between cloud top effective radius and subcloud aerosol number concentration is observed when cloud depth variations are accounted for. There are no discernable aerosol effects on cloud droplet spectral dispersion; the averaged spectral relative dispersion is 0.30 ± 0.04. Aerosol-cloud relationships are also identified from comparison of two isolated cloud cases that occurred under different degrees of anthropogenic influence. Cloud liquid water content, cloud droplet number concentration, and cloud top effective radius exhibit subadiabaticity resulting from entrainment mixing processes. The degree of LWC subadiabaticity is found to increase with cloud depth. Impacts of subadiabaticity on cloud optical properties are assessed. It is estimated that owing to entrainment mixing, cloud LWP, effective radius, and cloud albedo are decreased by 50–85%, 5–35%, and 2–26%, respectively, relative to adiabatic values of a plane-parallel cloud. The impact of subadiabaticity on cloud albedo is largest for shallow clouds. Results suggest that the effect of entrainment mixing must be accounted for when evaluating the aerosol indirect effect.
Journal of the Atmospheric Sciences | 2003
Miao-Ling Lu; Jian Wang; Andrew Freedman; Haflidi H. Jonsson; Robert A. Mcclatchey; John H. Seinfeld
Regions of enhanced humidity in the vicinity of cumulus clouds, so-called cloud halos, reflect features of cloud evolution, exert radiative effects, and may serve as a locus for new particle formation. Reported here are the results of an aircraft sampling campaign carried out near Oahu, Hawaii, from 31 July through 10 August 2001, aimed at characterizing the properties of trade wind cumulus cloud halos. An Aerodyne Research, Inc., fast spectroscopic water vapor sensor, flown for the first time in this campaign, allowed characterization of humidity properties at 10-m spatial resolution. Statistical properties of 60 traverses through cloud halos over the campaign were in general agreement with measurements reported by Perry and Hobbs. One particularly long-lived cloud is analyzed in detail, through both airborne measurement and numerical simulation, to track evolution of the cloud halos over the cloud’s lifetime. Results of both observation and the simulation show that cloud halos tend to be broad at lower levels and narrow at upper levels, and broader on the downshear side than on the upshear side, broadening with time particularly in the downshear direction. The high correlation of clear-air turbulence distribution with the halo distribution temporally and spatially suggests that the halo forms, in part, due to turbulent mixing at the cloud boundary. Radiative calculations carried out on the simulated cloud and halo field indicate that the halo radiative effect is largest near cloud top during mature and dissipation stages. The halo-enhanced atmospheric shortwave absorption, averaged over this period, is about 1.3% of total solar absorption in the column.
Journal of Geophysical Research | 2009
Jian Wang; Peter H. Daum; Seong Soo Yum; Yangang Liu; Gunnar Senum; Miao-Ling Lu; John H. Seinfeld; Haflidi H. Jonsson
During the Marine Stratus/Stratocumulus Experiment, cloud and aerosol microphysics were measured in the eastern Pacific off the coast of northern California on board Department of Energy Gulfstream-1 in July 2005. Three cases with uniform aerosol concentration and minimal drizzle concentration were examined to study cloud microphysical behavior. For these three cases, the average droplet number concentration increased with increasing altitude, while the average interstitial aerosol concentration decreased with altitude. The data show enhanced growth of large droplets and spectral broadening in cloud parcels with low liquid water mixing ratio. Three mixing models, including inhomogeneous mixing, entity type entrainment mixing, and circulation mixing proposed in this study, are examined with regard to their influences on cloud microphysics. The observed cloud microphysical behavior is most consistent with the circulation mixing, which describes the mixing between cloud parcels with different lifting condensation levels during their circulations driven by evaporative and radiative cooling. The enhanced growth and spectrum broadening resulting from the circulation mixing reduce cloud albedo at the same liquid water path and facilitate the formation of precipitation embryos.
Journal of Geophysical Research | 2008
Hongli Jiang; Graham Feingold; Haflidi H. Jonsson; Miao-Ling Lu; Patrick Y. Chuang; John H. Seinfeld
We present statistical comparisons of properties of clouds generated by Large Eddy Simulations (LES) with aircraft observations of nonprecipitating, warm cumulus clouds made in the vicinity of Houston, TX during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), carried out in the summer of 2006. Aircraft data were sampled with the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter airplane. Five flights (days) that are most suitable for studying aerosol-cloud interactions are selected from the 22 flights. The model simulations are initiated with observed environmental profiles. The simulations are used to generate an ensemble of thousands of cumulus clouds for statistically meaningful evaluations. Statistical comparisons focus on the properties of a set of dynamical and thermodynamical variables, sampled either in the cloud or the cloud updraft core. The set of variables includes cloud liquid water content (LWC), number mixing ratio of cloud droplets (Nd), cloud effective radius (re), updraft velocity (w), and the distribution of cloud sizes. In general, good agreement between the simulated and observed clouds is achieved in the normalized frequency distribution functions, the profiles averaged over the cloudy regions, the cross-cloud averages, and the cloud size distributions, despite big differences in sample size between the model output and the aircraft data. Some unresolved differences in frequency distributions of w and possible differences in cloud fraction are noted. These comparisons suggest that the LES is able to successfully generate the cumulus cloud populations that were present during GoMACCS. The extent to which this is true will depend on the specific application.
Journal of Applied Meteorology | 2002
Miao-Ling Lu; Robert A. Mcclatchey; John H. Seinfeld
Significant enhancements in humidity around cumulus clouds, that is, the “cloud halos” observed in many aircraft penetrations, are simulated using a three-dimensional dynamic model. Five case studies show that humidity halos occur mainly near lateral cloud boundaries and also occur at cloud top and base when the cloud dissipates. The humidity halo broadens as the cloud ages and is also broader in the presence of wind shear than in its absence, especially on the downshear side of the cloud. The broadband calculation over the solar spectrum (0.2–4.0 μm) shows that the shortwave (SW) heating rate in the halo is about 11%–18% larger than the ambient environmental heating rate. The strongest halo-induced surface SW radiative forcing for all cases studied is about −0.2 W m^−2, which is approximately a 0.02% change from the forcing without a halo.
Journal of Geophysical Research | 2006
Miao-Ling Lu; John H. Seinfeld
Archive | 2005
Miao-Ling Lu; John Seinfeld
Journal of Geophysical Research | 2007
Miao-Ling Lu; William C. Conant; Haflidi H. Jonsson; Varuntida Varutbangkul; John H. Seinfeld
Archive | 2007
Hongli Jiang; Graham Feingold; Haflidi H. Jonsson; Miao-Ling Lu; Patrick Yung-Shie Chuang; Richard C. Flagan; John Seinfeld