Miaomiao Tang
Henan University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miaomiao Tang.
Journal of Modern Optics | 2018
Hehe Li; Jingge Wang; Miaomiao Tang; Xinzhong Li
We theoretically investigate the propagation properties of cosh-Airy beams, which can be considered as a superposition of two Airy beams with different decay factors. We find that the field distribution of cosh-Airy beams is the same as that of Airy beams. Moreover, we find that the evolution of cosh-Airy beams is determined by the parameters of the cosh modulation function, in addition to the transverse scale factor and decay factor of the Airy beams. Our results demonstrate a possible method of manipulating Airy beams in free space. They can also be extended to the study of the propagation properties of cosine-Airy beams (or sine-Airy beams).
Optics Letters | 2017
Haixiang Ma; Xinzhong Li; Yuping Tai; Hehe Li; Jingge Wang; Miaomiao Tang; Yishan Wang; Jie Tang; Zhaogang Nie
We propose a method to determine the topological charge (TC) of a perfect vortex. With the phase shift technique, the perfect vortex and its conjugate beam exactly overlap and interfere. Consequently, the TC of a perfect vortex is determined by counting the number of interference fringes. This proposed method enables in situ determination of the TC of the perfect vortex without the need for additional optical elements, and it is immune to environmental vibration and parasitic interference.
Journal of Modern Optics | 2017
Hehe Li; Jingge Wang; Miaomiao Tang; Xinzhong Li
Abstract We investigate the propagation of an Airy beam along the optical axis of a uniaxial medium, and we find that the propagation property of the Airy beam is determined by the ordinary refractive index of uniaxial crystals and is independent of the ratio of the extraordinary to ordinary refractive index. We also know that the polarization state of linearly polarized Airy beams changes gradually during the propagation. This shows that the propagation properties of the Airy beam in uniaxial crystals along the optical axis is distinctly different from that orthogonal to the optical axis.
Optics Express | 2018
Xinzhong Li; Haixiang Ma; Hao Zhang; Yuping Tai; Hehe Li; Miaomiao Tang; Jingge Wang; Jie Tang; Yangjian Cai
As a spatial structured light field, the optical vortex (OV) has attracted extensive attention in recent years. In practice, the OV lattice (OVL) is an optimal candidate for applications of orbital angular momentum (OAM)-based optical communications, microparticle manipulation, and micro/nanofabrication. However, traditional methods for producing OVLs meet a significant challenge: the OVL structures cannot be adjusted freely and form a close-packed arrangement, simultaneously. To overcome these difficulties, we propose an alternative scheme to produce close-packed OVLs (CPOVLs) with controllable structures. By borrowing the concept of the close-packed lattice from solid-state physics, CPOVLs with versatile structures are produced by using logical operations of expanding OV primitive cells combined with the technique of phase mask generation. Then, the existence of OAM states in the CPOVLs is verified. Furthermore, the energy flow and OAM distribution of the CPOVLs are visualized and analyzed. From a light field physics viewpoint, this work increases the adjustment dimensions and extends the fundamental understanding of the OVL, which will introduce novel applications.
Optics Express | 2018
Xinzhong Li; Haixiang Ma; Chuanlei Yin; Jie Tang; Hehe Li; Miaomiao Tang; Jingge Wang; Yuping Tai; Xiufang Li; Yishan Wang
Optics Communications | 2017
Miaomiao Tang; Daomu Zhao; Xinzhong Li; Hehe Li
Journal of The Optical Society of America A-optics Image Science and Vision | 2017
Hehe Li; Jingge Wang; Miaomiao Tang; Xinzhong Li
Journal of Electronic Materials | 2017
Hui Wang; Yang Zhao; Xinzhong Li; Zhiqiang Zhen; Hehe Li; Jingge Wang; Miaomiao Tang
Optics Communications | 2018
Miaomiao Tang; Daomu Zhao; Xinzhong Li; Jingge Wang
Vacuum | 2017
Yang Zhao; Hui Wang; Xiaoyang Gong; Jingge Wang; Hehe Li; Miaomiao Tang; Xinzhong Li