Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Micael Andersson is active.

Publication


Featured researches published by Micael Andersson.


Science | 2011

Effects of Working-Memory Training on Striatal Dopamine Release

Lars Bäckman; Lars Nyberg; Anna Soveri; Jarkko Johansson; Micael Andersson; Erika Dahlin; Anna Stigsdotter Neely; Jere Virta; Matti Laine; Juha O. Rinne

A cognitive training program that improves working memory is associated with increased dopamine release during task performance. Updating of working memory has been associated with striato-frontal brain regions and phasic dopaminergic neurotransmission. We assessed raclopride binding to striatal dopamine (DA) D2 receptors during a letter-updating task and a control condition before and after 5 weeks of updating training. Results showed that updating affected DA activity before training and that training further increased striatal DA release during updating. These findings highlight the pivotal role of transient neural processes associated with D2 receptor activity in working memory.


NeuroImage | 2012

Pleasant human touch is represented in pregenual anterior cingulate cortex

Lenita Lindgren; G. Westling; Christine Brulin; Stefan Lehtipalo; Micael Andersson; Lars Nyberg

Touch massage (TM) is a form of pleasant touch stimulation used as treatment in clinical settings and found to improve well-being and decrease anxiety, stress, and pain. Emotional responses reported during and after TM have been studied, but the underlying mechanisms are still largely unexplored. In this study, we used functional magnetic resonance (fMRI) to test the hypothesis that the combination of human touch (i.e. skin-to-skin contact) with movement is eliciting a specific response in brain areas coding for pleasant sensations. The design included four different touch conditions; human touch with or without movement and rubber glove with or without movement. Force (2.5 N) and velocity (1.5 cm/s) were held constant across conditions. The pleasantness of the four different touch stimulations was rated on a visual analog scale (VAS-scale) and human touch was rated as most pleasant, particularly in combination with movement. The fMRI results revealed that TM stimulation most strongly activated the pregenual anterior cingulate cortex (pgACC). These results are consistent with findings showing pgACC activation during various rewarding pleasant stimulations. This area is also known to be activated by both opioid analgesia and placebo. Together with these prior results, our finding furthers the understanding of the basis for positive TM treatment effects.


Brain | 2008

Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage.

Niklas Lenfeldt; Anne Larsson; Lars Nyberg; Micael Andersson; Richard Birgander; Anders Eklund; Jan Malm

In patients with idiopathic normal pressure hydrocephalus (INPH), the changes in brain function that take place in conjunction with improved behavioural performance after CSF drainage is still unknown. In this study, we use functional MRI (fMRI) to investigate the changes in cortical activity that accompany improved motor and cognitive performance after long-term external lumbar drainage (ELD) of CSF in patients with INPH. Eighteen INPH patients were initially included together with age- and sex-matched controls. Data from 11 INPH patients were analysed both before and after ELD. The average drain volume for these 11 patients was 400 ml/3 days. Brain activation was investigated by fMRI before and after the procedure on a 1.5T Philips scanner using protocols taxing motor performance (finger tapping and reaction time) and cognitive functioning (memory and attention). Behavioural data were compared using non-parametric tests at a significance level of 0.05, whereas fMRI data were analysed by statistical parametric mapping including conjunction analysis of areas with enhanced activity after drainage in patients and areas activated in controls (P < 0.005, uncorrected). Improved regions were defined as areas in the INPH brain that increased in activity after ELD with the requirement that the same areas were activated in control subjects. Following ELD, right-hand finger tapping improved from 104 +/- 38 to 117 +/- 25 (mean +/- SD) (P = 0.02). Left-hand finger tapping showed a tendency to improve, the number of keystrokes increasing from 91 +/- 40 to 105 +/- 20 (P = 0.12). Right-hand reaction time improved from 1630 +/- 566 ms to 1409 +/- 442 ms, whereas left-hand reaction time improved from 1760 +/- 600 ms to 1467 +/- 420 ms (both P-values = 0.01). Significant improvements in motor performance were accompanied by bilateral increased activation in the supplementary motor area. No improvement was found in cognitive functioning. The results suggest that motor function recovery in INPH patients after CSF removal is related to enhanced activity in medial parts of frontal motor areas considered crucial for motor planning; a finding consistent with INPH being a syndrome related to a reversible suppression of frontal periventricular cortico-basal ganglia-thalamo-cortical pathways.


Journal of Cognitive Neuroscience | 2014

Age-related and genetic modulation of frontal cortex efficiency

Lars Nyberg; Micael Andersson; Karolina Kauppi; Anders Lundquist; Jonas Persson; Sara Pudas; Lars-Göran Nilsson

The dorsolateral pFC (DLPFC) is a key region for working memory. It has been proposed that the DLPFC is dynamically recruited depending on task demands. By this view, high DLPFC recruitment for low-demanding tasks along with weak DLPFC upregulation at higher task demands reflects low efficiency. Here, the fMRI BOLD signal during working memory maintenance and manipulation was examined in relation to aging and catechol-O-methyltransferase (COMT) Val158Met status in a large representative sample (n = 287). The efficiency hypothesis predicts a weaker DLPFC response during manipulation, along with a stronger response during maintenance for older adults and COMT Val carriers compared with younger adults and COMT Met carriers. Consistent with the hypothesis, younger adults and met carriers showed maximal DLPFC BOLD response during manipulation, whereas older adults and val carriers displayed elevated DLPFC responses during the less demanding maintenance condition. The observed inverted relations support a link between dopamine and DLPFC efficiency.


NeuroImage | 2009

Striatal dopamine D2 binding is related to frontal BOLD response during updating of long-term memory representations.

Lars Nyberg; Micael Andersson; Lars Forsgren; Susanna Jakobsson-Mo; Anne Larsson; Petter Marklund; Lars-Göran Nilsson; Katrine Riklund; Lars Bäckman

Multi-modal brain imaging was used to examine the relation between individual differences in resting-state striatal dopamine D2 binding and the magnitude of prefrontal BOLD activation during updating of long-term memory (LTM) representations. Increased activity in the left prefrontal cortex was observed when LTM updating was required, and there was a positive correlation between striatal D2 activity and the magnitude of left prefrontal activity during updating. These findings support predictions from neurocomputational models of a relation of dopaminergic neurotransmission to transient cognitive operations and related brain activity.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Dopamine D2 receptor availability is linked to hippocampal–caudate functional connectivity and episodic memory

Lars Nyberg; Nina Karalija; Alireza Salami; Micael Andersson; Anders Wahlin; Neda Kaboovand; Ylva Köhncke; Jan Axelsson; Anna Rieckmann; Goran Papenberg; Douglas D. Garrett; Katrine Riklund; Martin Lövdén; Ulman Lindenberger; Lars Bäckman

Significance Cognitive functioning depends in part on dopamine neurotransmission in the brain. Research implicates the dopamine D1 receptor family in cognitive functions linked to the prefrontal cortex, such as working memory. The dopamine D2 receptor family has also been linked to cognition, but it remains unclear to which cognitive functions it is specifically related. We examined the relation of D2 receptors to episodic memory, working memory, and speed of processing. D2 receptors in the caudate and hippocampus were related to episodic memory and modulated caudate–hippocampal functional connections. These findings link the dopamine D2 system to hippocampus-based cognitive functions. D1 and D2 dopamine receptors (D1DRs and D2DRs) may contribute differently to various aspects of memory and cognition. The D1DR system has been linked to functions supported by the prefrontal cortex. By contrast, the role of the D2DR system is less clear, although it has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions. Here we present results from 181 healthy adults between 64 and 68 y of age who underwent comprehensive assessment of episodic memory, working memory, and processing speed, along with MRI and D2DR assessment with [11C]raclopride and PET. Caudate D2DR availability was positively associated with episodic memory but not with working memory or speed. Whole-brain analyses further revealed a relation between hippocampal D2DR availability and episodic memory. Hippocampal and caudate D2DR availability were interrelated, and functional MRI-based resting-state functional connectivity between the ventral caudate and medial temporal cortex increased as a function of caudate D2DR availability. Collectively, these findings indicate that D2DRs make a specific contribution to hippocampus-based cognition by influencing striatal and hippocampal regions, and their interactions.


Brain Research | 2015

COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition

Nina Nevalainen; Katrine Riklund; Micael Andersson; Jan Axelsson; Mattias Ögren; Martin Lövdén; Ulman Lindenberger; Lars Bäckman; Lars Nyberg

Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging.


The Journal of Neuroscience | 2015

Lesser neural pattern similarity across repeated tests is associated with better long-term memory retention

Linnea Karlsson Wirebring; Carola Wiklund-Hörnqvist; Johan Eriksson; Micael Andersson; Bert Jonsson; Lars Nyberg

Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability—the altering or adding of underlying memory representations. Human participants studied 60 Swahili–Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. SIGNIFICANCE STATEMENT Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory retrieval might strengthen memory by inducing more differentiated or elaborated memory representations in the parietal cortex, and at the same time reducing demands on prefrontal-cortex-mediated cognitive control processes during retrieval. The findings contrast with recent demonstrations that repeated encoding induces less differentiated or elaborated memory representations. Together, this study suggests a potential neurocognitive explanation of why repeated retrieval is more beneficial for long-term retention than repeated encoding, a phenomenon known as the testing effect.


Cerebral Cortex | 2018

Latent-profile analysis reveals behavioral and brain correlates of dopamine-cognition associations

Martin Lövdén; Nina Karalija; Micael Andersson; Anders Wahlin; Jan Axelsson; Ylva Köhncke; Lars S. Jonasson; Anna Rieckman; Goran Papenberg; Douglas D. Garrett; Marc Guitart-Masip; Alireza Salami; Katrine Riklund; Lars Bäckman; Lars Nyberg; Ulman Lindenberger

Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.


NeuroImage | 2018

Self-rated intensity of habitual physical activities is positively associated with dopamine D2/3 receptor availability and cognition

Ylva Köhncke; Goran Papenberg; Lars S. Jonasson; Nina Karalija; Anders Wahlin; Alireza Salami; Micael Andersson; Jan Axelsson; Lars Nyberg; Katrine Riklund; Lars Bäckman; Ulman Lindenberger; Martin Lövdén

ABSTRACT Between‐person differences in cognitive performance in older age are associated with variations in physical activity. The neurotransmitter dopamine (DA) contributes to cognitive performance, and the DA system deteriorates with advancing age. Animal data and a patient study suggest that physical activity modulates DA receptor availability, but data from healthy humans are lacking. In a cross‐sectional study with 178 adults aged 64–68 years, we investigated links among self‐reported physical activity, D2/D3 DA receptor (D2/3DR) availability, and cognitive performance. D2/3DR availability was measured with [11C]raclopride positron emission tomography at rest. We used structural equation modeling to obtain latent factors for processing speed, episodic memory, working memory, physical activity, and D2/3DR availability in caudate, putamen, and hippocampus. Physical activity intensity was positively associated with D2/3DR availability in caudate, but not putamen and hippocampus. Frequency of physical activity was not related to D2/3DR availability. Physical activity intensity was positively related to episodic memory and working memory. D2/3DR availability in caudate and hippocampus was positively related to episodic memory. Taken together, our results suggest that striatal DA availability might be a neurochemical correlate of episodic memory that is also associated with physical activity. HIGHLIGHTSWe measured DA D2/3 receptor binding potential (D2/3DR BPND) in 178 elderly adults.Self‐rated physical activity intensity was positively related to caudate D2/3DR BPND.Physical activity intensity was positively related to episodic and working memory.Caudate D2/3DR BPND was positively related to episodic memory.Physical activity frequency was not related to caudate D2/3DR BPND or to cognition.

Collaboration


Dive into the Micael Andersson's collaboration.

Top Co-Authors

Avatar

Lars Nyberg

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge