Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Micha Ilan is active.

Publication


Featured researches published by Micha Ilan.


The ISME Journal | 2012

Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges.

Susanne Schmitt; Peter Tsai; James J. Bell; Jane Fromont; Micha Ilan; Niels Lindquist; Thierry Perez; Allen G. Rodrigo; Peter J. Schupp; Jean Vacelet; Nicole S. Webster; Ute Hentschel; Michael W. Taylor

Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the worlds oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.


International Journal of Biological Macromolecules | 2010

Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin.

Hermann Ehrlich; Micha Ilan; Manuel Maldonado; G. Muricy; Giorgio Bavestrello; Zoran Kljajić; J.L. Carballo; S. Schiaparelli; Alexander V. Ereskovsky; Peter J. Schupp; Richard T. Born; Hartmut Worch; Vasily V. Bazhenov; Denis V. Kurek; V. Varlamov; D. V. Vyalikh; Kurt Kummer; V.V. Sivkov; S. L. Molodtsov; Heike Meissner; G. Richter; E. Steck; W. Richter; S. Hunoldt; Martin Kammer; Silvia Paasch; V. Krasokhin; G. Patzke; Eike Brunner

Marine invertebrate organisms including sponges (Porifera) not only provide an abundant source of biologically active secondary metabolites but also inspire investigations to develop biomimetic composites, scaffolds and templates for practical use in materials science, biomedicine and tissue engineering. Here, we presented a detailed study of the structural and physico-chemical properties of three-dimensional skeletal scaffolds of the marine sponges Aiolochroia crassa, Aplysina aerophoba, A. cauliformis, A. cavernicola, and A. fulva (Verongida: Demospongiae). We show that these fibrous scaffolds have a multilayered design and are made of chitin. (13)C solid-state NMR spectroscopy, NEXAFS, and IR spectroscopy as well as chitinase digestion and test were applied in order to unequivocally prove the existence of alpha-chitin in all investigated species.


BMC Evolutionary Biology | 2006

Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria.

Chagai Rot; Itay Goldfarb; Micha Ilan; Dorothée Huchon

BackgroundThe mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera).ResultsA 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor.ConclusionLittle is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.


Applied and Environmental Microbiology | 2005

16S rRNA Phylogeny of Sponge-Associated Cyanobacteria

Laura Steindler; Dorothée Huchon; Adi Avni; Micha Ilan

ABSTRACT Phylogenetic analyses of 16S rRNA sequences of sponge-associated cyanobacteria showed them to be polyphyletic, implying that they derived from multiple independent symbiotic events. Most of the symbiont sequences were affiliated to a group of Synechococcus and Prochlorococcus species. However, other symbionts were related to different groups, such as the Oscillatoriales.


Fungal Diversity | 2010

Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge

Z. Paz; Irina S. Druzhinina; M. M. Aveskamp; A. Shnaiderman; Yaniv Aluma; Shmuel Carmeli; Micha Ilan; Oded Yarden

Fungi that inhabit marine sponges occupy an ecological niche that has recently attracted great attention due to the potential in either ecological or pharmaceutical advances. The ecological interaction between marine sponges and fungi is, however, only poorly understood. Eighty five fungal taxa were isolated from the marine sponge Psammocinia sp. from the Mediterranean Sea. The majority (89%) of these taxa were isolated using a `sample compressing` method, in combination with the use of fungicides-amended medium. Abundant `terrestrial` taxa such as Acremonium, Penicillium and Trichoderma were found along with potentially undescribed Phoma and Trichoderma species. Several of these taxa exhibited in vitro anti-fungal properties as determined against four test fungi. Even though a significant number of fungal taxa were isolated during this study, we estimate that the diversity of fungi that are associated with Psammocinia sp. is higher than reported here. It is advocated that Psammocinia, and other sponge genera, may be a prime niche for discovering new fungal species as well as novel anti-fungal compounds from fungal sources.


International Journal of Biological Macromolecules | 2010

Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications

Hermann Ehrlich; E. Steck; Micha Ilan; Manuel Maldonado; G. Muricy; Giorgio Bavestrello; Zoran Kljajić; J.L. Carballo; S. Schiaparelli; Alexander V. Ereskovsky; Peter J. Schupp; Richard T. Born; Hartmut Worch; Vasily V. Bazhenov; Denis V. Kurek; V. Varlamov; D. V. Vyalikh; Kurt Kummer; V.V. Sivkov; S. L. Molodtsov; Heike Meissner; G. Richter; S. Hunoldt; Martin Kammer; Silvia Paasch; V. Krasokhin; G. Patzke; Eike Brunner; W. Richter

In order to evaluate the biomedical potential of three-dimensional chitinous scaffolds of poriferan origin, chondrocyte culturing experiments were performed. It was shown for the first time that freshly isolated chondrocytes attached well to the chitin scaffold and synthesized an extracellular matrix similar to that found in other cartilage tissue engineering constructs. Chitin scaffolds also supported deposition of a proteoglycan-rich extracellular matrix of chondrocytes seeded bioconstructs in an in vivo environment. We suggest that chitin sponge scaffolds, apart from the demonstrated biomedical applications, are highly optimized structures for use as filtering systems, templates for biomineralization as well as metallization in order to produce catalysts.


Connective Tissue Research | 1996

Intracrystalline Macromolecules are Involved in the Morphogenesis of Calcitic Sponge Spicules

Joanna Aizenberg; Micha Ilan; Steve Weiner; Lia Addadi

Control over the shapes of biologically formed crystals is generally not well understood. We have studied the morphogenesis of the different-shaped calcareous sponge spicules using high-resolution synchrotron X-ray diffraction. We show that a remarkable correlation exists between the distribution of defects within spicule crystals at the nanometer level and their macroscopic morphologies at the millimeter level. These defects are produced by controlled intercalation of specialized macromolecules into the crystals. We also show that such intracrystalline macromolecules are involved in the regulation of the shapes of synthetic crystals grown de novo from solution, and epitaxially overgrown on the spicule surfaces. We conclude that intracrystalline macromolecules play an important role in modulation of the morphologies of the forming biogenic crystals. Possible mechanisms that may account for the observed growth patterns are supported by fluorescence labeling experiments in vivo.


The Biological Bulletin | 1995

The Life of a Sponge in a Sandy Lagoon

Micha Ilan; Avigdor Abelson

Infaunal soft-bottom invertebrates benefit from the presence of sediment, but sedimentation is potentially harmful for hard-bottom dwellers. Most sponges live on hard bottom, but on coral reefs in the Red Sea, the species Biemna ehrenbergi (Keller, 1889) is found exclusively in soft-bottom lagoons, usually in the shallowest part. This location is a sink environment, which increases the deposition of particulate organic matter. Most of the sponge body is covered by sediment, but the chimney-like siphons protrude from the sediment surface. The sponge is attached to the buried beach-rock, which reduces the risk of dislodgment during storms. Dye injected above and into the sediment revealed, for the first time, a sponge pumping interstitial water (rich with particles and nutrients) into its aquiferous system. Visual examination of plastic replicas of the aquiferous system and electron microscopical analysis of sponge tissue revealed that the transcellular ostia are mostly located on the buried surface of the sponge. The oscula, however, are located on top of the siphons; their elevated position and their ability to close combine to prevent the filtering system outflow from clogging. The transcellular ostia presumably remain open due to cellular mobility. The sponge maintains a large population of bacteriocytes, which contains bacteria of several different species. Some of these bacteria disintegrate, and may be consumed by the sponge.


Journal of Structural Biology | 2013

Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris

Hermann Ehrlich; Oksana V. Kaluzhnaya; Eike Brunner; Mikhail V. Tsurkan; Alexander V. Ereskovsky; Micha Ilan; Konstantin R. Tabachnick; Vasilii V. Bazhenov; Silvia Paasch; Martin Kammer; René Born; Allison L. Stelling; Roberta Galli; S. I. Belikov; O. V. Petrova; Victor V. Sivkov; D. V. Vyalikh; Sebastian Hunoldt; Gert Wörheide

This work demonstrates that chitin is an important structural component within the skeletal fibers of the freshwater sponge Spongilla lacustris. Using a variety of analytical techniques ((13)C solid state NMR, FT-IR, Raman, NEXAFS, ESI-MS, Morgan-Elson assay and Calcofluor White Staining); we show that this sponge chitin is much closer to α-chitin, known to be present in other animals, than to β-chitin. Genetic analysis confirmed the presence of chitin synthases, which are described for the first time in a sponge. The presence of chitin in both marine (demosponges and hexactinellids) and freshwater sponges indicates that this important structural biopolymer was already present in their common ancestor.


International Journal of Biological Macromolecules | 2013

Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge

Marcin Wysokowski; Vasilii V. Bazhenov; Mikhail V. Tsurkan; Roberta Galli; Allison L. Stelling; Hartmut Stöcker; Sabine Kaiser; Elke Niederschlag; Günter Gärtner; Thomas Behm; Micha Ilan; Alexander Y. Petrenko; Teofil Jesionowski; Hermann Ehrlich

The recent discovery of chitin within skeletons of numerous marine and freshwater sponges (Porifera) stimulates further experiments to identify this structural aminopolysaccharide in new species of these aquatical animals. Aplysina fistularis (Verongida: Demospongiae: Porifera) is well known to produce biologically active bromotyrosines. Here, we present a detailed study of the structural and physico-chemical properties of the three-dimensional skeletal scaffolds of this sponge. Calcofluor white staining, Raman and IR spectroscopy, ESI-MS as well as chitinase digestion test were applied in order to unequivocally prove the first discovery of α-chitin in skeleton of A. fistularis.

Collaboration


Dive into the Micha Ilan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oded Yarden

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermann Ehrlich

Freiberg University of Mining and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge