Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Colman is active.

Publication


Featured researches published by Michael A. Colman.


Progress in Biophysics & Molecular Biology | 2011

3D virtual human atria: A computational platform for studying clinical atrial fibrillation

Oleg Aslanidi; Michael A. Colman; Jonathan Stott; Halina Dobrzynski; Mark R. Boyett; Arun V. Holden; Henggui Zhang

Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis. Results of such simulations can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings. The virtual human atria can provide in-depth insights into 3D excitation propagation processes within atrial walls of a whole heart in vivo, which is beyond the current technical capabilities of experimental or clinical set-ups.


The Journal of Physiology | 2013

Pro‐arrhythmogenic effects of atrial fibrillation‐induced electrical remodelling: insights from the three‐dimensional virtual human atria

Michael A. Colman; Oleg Aslanidi; Sanjay Kharche; Mark R. Boyett; Clifford J. Garratt; Jules C. Hancox; Henggui Zhang

•  Previous studies have shown that atrial electrical properties are altered (remodelled) by atrial fibrillation (AF) and that the recurrence of AF is high following remodelling. However, demonstrating a causal link between atrial remodelling in experimental models and the increased risk of AF is a challenge. •  AF‐induced electrical remodelling abbreviated atrial action potential duration (APD) non‐uniformly across the atria; this resulted in relatively short APDs co‐existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. •  It increases tissue vulnerability to re‐entry initiation and maintenance at these tissue junctions. •  The AF‐induced electrical remodelling also stabilized and accelerated re‐entrant excitation waves, leading to rapid and sustained re‐entry. •  This study provides novel insights towards understanding the mechanisms underlying the pro‐arrhythmic effects of the AF‐induced electrical remodelling in atrial tissue.


PLOS Computational Biology | 2015

A New Algorithm to Diagnose Atrial Ectopic Origin from Multi Lead ECG Systems - Insights from 3D Virtual Human Atria and Torso

Erick Andres Perez Alday; Michael A. Colman; Philip Langley; Timothy D. Butters; Jonathan Higham; Antony J. Workman; Jules C. Hancox; Henggui Zhang

Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms.


Europace | 2014

Evolution and pharmacological modulation of the arrhythmogenic wave dynamics in canine pulmonary vein model

Michael A. Colman; Marta Varela; Jules C. Hancox; Henggui Zhang; Oleg Aslanidi

Aims Atrial fibrillation (AF), the commonest cardiac arrhythmia, has been strongly linked with arrhythmogenic sources near the pulmonary veins (PVs), but underlying mechanisms are not fully understood. We aim to study the generation and sustenance of wave sources in a model of the PV tissue. Methods and results A previously developed biophysically detailed three-dimensional canine atrial model is applied. Effects of AF-induced electrical remodelling are introduced based on published experimental data, as changes of ion channel currents (ICaL, IK1, Ito, and IKur), the action potential (AP) and cell-to-cell coupling levels. Pharmacological effects are introduced by blocking specific ion channel currents. A combination of electrical heterogeneity (AP tissue gradients of 5–12 ms) and anisotropy (conduction velocities of 0.75–1.25 and 0.21–0.31 m/s along and transverse to atrial fibres) can results in the generation of wave breaks in the PV region. However, a long wavelength (171 mm) prevents the wave breaks from developing into re-entry. Electrical remodelling leads to decreases in the AP duration, conduction velocity and wavelength (to 49 mm), such that re-entry becomes sustained. Pharmacological effects on the tissue heterogeneity and vulnerability (to wave breaks and re-entry) are quantified to show that drugs that increase the wavelength and stop re-entry (IK1 and IKur blockers) can also increase the heterogeneity (AP gradients of 26–27 ms) and the likelihood of wave breaks. Conclusion Biophysical modelling reveals large conduction block areas near the PVs, which are due to discontinuous fibre arrangement enhanced by electrical heterogeneity. Vulnerability to re-entry in such areas can be modulated by pharmacological interventions.


Interface Focus | 2013

Heterogeneous and anisotropic integrative model of pulmonary veins: computational study of arrhythmogenic substrate for atrial fibrillation

Oleg Aslanidi; Michael A. Colman; Marta Varela; Jichao Zhao; Bruce H. Smaill; Jules C. Hancox; Mark R. Boyett; Henggui Zhang

Mechanisms underlying the genesis of re-entrant substrate for the most common cardiac arrhythmia, atrial fibrillation (AF), are not well understood. In this study, we develop a multi-scale three-dimensional computational model that integrates cellular electrophysiology of the left atrium (LA) and pulmonary veins (PVs) with the respective tissue geometry and fibre orientation. The latter is reconstructed in unique detail from high-resolution (approx. 70 μm) contrast micro-computed tomography data. The model is used to explore the mechanisms of re-entry initiation and sustenance in the PV region, regarded as the primary source of high-frequency electrical activity in AF. Simulations of the three-dimensional model demonstrate that an initial break-down of normal electrical excitation wave-fronts can be caused by the electrical heterogeneity between the PVs and LA. High tissue anisotropy is then responsible for the slow conduction and generation of a re-entrant circuit near the PVs. Evidence of such circuits has been seen clinically in AF patients. Our computational study suggests that primarily the combination of electrical heterogeneity and conduction anisotropy between the PVs and LA tissues leads to the generation of a high-frequency (approx. 10 Hz) re-entrant source near the PV sleeves, thus providing new insights into the arrhythmogenic mechanisms of excitation waves underlying AF.


European Journal of Pharmaceutical Sciences | 2012

Virtual tissue engineering of the human atrium: modelling pharmacological actions on atrial arrhythmogenesis.

Oleg Aslanidi; Moza Al-Owais; Alan P. Benson; Michael A. Colman; Clifford J. Garratt; Stephen H. Gilbert; John P. Greenwood; Arun V. Holden; Sanjay Kharche; Elizabeth Kinnell; Eleftheria Pervolaraki; Sven Plein; Jonathan Stott; Henggui Zhang

Computational models of human atrial cells, tissues and atria have been developed. Cell models, for atrial wall, crista terminalis, appendage, Bachmanns bundle and pectinate myocytes are characterised by action potentials, ionic currents and action potential duration (APD) restitution. The principal effect of the ion channel remodelling of persistent atrial fibrillation (AF), and a mutation producing familial AF, was APD shortening at all rates. Electrical alternans was abolished by the modelled action of Dronedarone. AF induced gap junctional remodelling slows propagation velocity at all rates. Re-entrant spiral waves in 2-D models are characterised by their frequency, wavelength, meander and stability. For homogenous models of normal tissue, spiral waves self-terminate, due to meander to inexcitable boundaries, and by dissipation of excitation. AF electrical remodelling in these homogenous models led to persistence of spiral waves, and AF fibrotic remodelling to their breakdown into fibrillatory activity. An anatomical model of the atria was partially validated by the activation times of normal sinus rhythm. The use of tissue geometry from clinical MRI, and tissue anisotropy from ex vivo diffusion tensor magnetic resonance imaging is outlined. In the homogenous model of normal atria, a single scroll breaks down onto spatio-temporal irregularity (electrical fibrillation) that is self-terminating; while in the AF remodelled atria the fibrillatory activity is persistent. The persistence of electrical AF can be dissected in the model in terms of ion channel and intercellular coupling processes, that can be modified pharmacologically; the effects of anatomy, that can be modified by ablation; and the permanent effects of fibrosis, that need to be prevented.


IEEE Transactions on Biomedical Engineering | 2011

Correlation Between P-Wave Morphology and Origin of Atrial Focal Tachycardia—Insights From Realistic Models of the Human Atria and Torso

Michael A. Colman; Oleg Aslanidi; Jonathan Stott; Arun V. Holden; Henggui Zhang

Atrial arrhythmias resulting from abnormally rapid focal activity in the atria may be reflected in an altered P-wave morphology (PWM) in the ECG. Although clinically important, detailed relationships between PWM and origins of atrial focal excitations have not been established. To study such relationships, we developed computational models of the human atria and torso. The model simulation results were used to evaluate an extant clinical algorithm for locating the origin of atrial focal points from the ECG. The simulations showed that the algorithm was practical and could predict the atrial focal locations with 85% accuracy. We proposed a further refinement of the algorithm to distinguish between focal locations within the large atrial bundles.


Frontiers in Physiology | 2016

Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling

Ross Morgan; Michael A. Colman; Henry Chubb; Gunnar Seemann; Oleg Aslanidi

Introduction: The genesis of atrial fibrillation (AF) and success of AF ablation therapy have been strongly linked with atrial fibrosis. Increasing evidence suggests that patient-specific distributions of fibrosis may determine the locations of electrical drivers (rotors) sustaining AF, but the underlying mechanisms are incompletely understood. This study aims to elucidate a missing mechanistic link between patient-specific fibrosis distributions and AF drivers. Methods: 3D atrial models integrated human atrial geometry, rule-based fiber orientation, region-specific electrophysiology, and AF-induced ionic remodeling. A novel detailed model for an atrial fibroblast was developed, and effects of myocyte-fibroblast (M-F) coupling were explored at single-cell, 1D tissue and 3D atria levels. Left atrial LGE MRI datasets from 3 chronic AF patients were segmented to provide the patient-specific distributions of fibrosis. The data was non-linearly registered and mapped to the 3D atria model. Six distinctive fibrosis levels (0–healthy tissue, 5–dense fibrosis) were identified based on LGE MRI intensity and modeled as progressively increasing M-F coupling and decreasing atrial tissue coupling. Uniform 3D atrial model with diffuse (level 2) fibrosis was considered for comparison. Results: In single cells and tissue, the largest effect of atrial M-F coupling was on the myocyte resting membrane potential, leading to partial inactivation of sodium current and reduction of conduction velocity (CV). In the 3D atria, further to the M-F coupling, effects of fibrosis on tissue coupling greatly reduce atrial CV. AF was initiated by fast pacing in each 3D model with either uniform or patient-specific fibrosis. High variation in fibrosis distributions between the models resulted in varying complexity of AF, with several drivers emerging. In the diffuse fibrosis models, waves randomly meandered through the atria, whereas in each the patient-specific models, rotors stabilized in fibrotic regions. The rotors propagated slowly around the border zones of patchy fibrosis (levels 3–4), failing to spread into inner areas of dense fibrosis. Conclusion: Rotors stabilize in the border zones of patchy fibrosis in 3D atria, where slow conduction enable the development of circuits within relatively small regions. Our results can provide a mechanistic explanation for the clinical efficacy of ablation around fibrotic regions.


PLOS Computational Biology | 2016

Atrial Heterogeneity Generates Re-entrant Substrate during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Models

Marta Varela; Michael A. Colman; Jules C. Hancox; Oleg Aslanidi

Anti-arrhythmic drug therapy is a frontline treatment for atrial fibrillation (AF), but its success rates are highly variable. This is due to incomplete understanding of the mechanisms of action of specific drugs on the atrial substrate at different stages of AF progression. We aimed to elucidate the role of cellular, tissue and organ level atrial heterogeneities in the generation of a re-entrant substrate during AF progression, and their modulation by the acute action of selected anti-arrhythmic drugs. To explore the complex cell-to-organ mechanisms, a detailed biophysical models of the entire 3D canine atria was developed. The model incorporated atrial geometry and fibre orientation from high-resolution micro-computed tomography, region-specific atrial cell electrophysiology and the effects of progressive AF-induced remodelling. The actions of multi-channel class III anti-arrhythmic agents vernakalant and amiodarone were introduced in the model by inhibiting appropriate ionic channel currents according to experimentally reported concentration-response relationships. AF was initiated by applied ectopic pacing in the pulmonary veins, which led to the generation of localized sustained re-entrant waves (rotors), followed by progressive wave breakdown and rotor multiplication in both atria. The simulated AF scenarios were in agreement with observations in canine models and patients. The 3D atrial simulations revealed that a re-entrant substrate was typically provided by tissue regions of high heterogeneity of action potential duration (APD). Amiodarone increased atrial APD and reduced APD heterogeneity and was more effective in terminating AF than vernakalant, which increased both APD and APD dispersion. In summary, the initiation and sustenance of rotors in AF is linked to atrial APD heterogeneity and APD reduction due to progressive remodelling. Our results suggest that anti-arrhythmic strategies that increase atrial APD without increasing its dispersion are effective in terminating AF.


PLOS Computational Biology | 2017

In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis

Michael A. Colman; Haibo Ni; Bo Liang; Nicole Schmitt; Henggui Zhang

A recent experimental study investigating patients with lone atrial fibrillation identified six novel mutations in the KCNA5 gene. The mutants exhibited both gain- and loss-of-function of the atrial specific ultra-rapid delayed rectifier K+ current, IKur. The aim of this study is to elucidate and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were investigated at the cellular level. In tissue, we assessed the effects of the mutations on the vulnerability to unidirectional conduction patterns and dynamics of re-entrant excitation waves. Gain-of-function mutations shortened the action potential duration in single cells, and stabilised and accelerated re-entrant excitation in tissue. Loss-of-function mutations had heterogeneous effects on action potential duration and promoted early-after-depolarisations following beta-adrenergic stimulation. In the tissue model, loss-of-function mutations facilitated breakdown of excitation waves at more physiological excitation rates than the wild-type, and the generation of early-after-depolarisations promoted unidirectional patterns of excitation. Gain- and loss-of-function IKur mutations produced multiple mechanisms of atrial arrhythmogenesis, with significant differences between the two groups of mutations. This study provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results on both pro- and anti-arrhythmic effects of blocking IKur.

Collaboration


Dive into the Michael A. Colman's collaboration.

Top Co-Authors

Avatar

Henggui Zhang

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark R. Boyett

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Sanjay Kharche

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haibo Ni

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge