Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Curran is active.

Publication


Featured researches published by Michael A. Curran.


Proceedings of the National Academy of Sciences of the United States of America | 2010

PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors

Michael A. Curran; Welby Montalvo; Hideo Yagita; James P. Allison

Vaccination with irradiated B16 melanoma cells expressing either GM-CSF (Gvax) or Flt3-ligand (Fvax) combined with antibody blockade of the negative T-cell costimulatory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) promotes rejection of preimplanted tumors. Despite CTLA-4 blockade, T-cell proliferation and cytokine production can be inhibited by the interaction of programmed death-1 (PD-1) with its ligands PD-L1 and PD-L2 or by the interaction of PD-L1 with B7-1. Here, we show that the combination of CTLA-4 and PD-1 blockade is more than twice as effective as either alone in promoting the rejection of B16 melanomas in conjunction with Fvax. Adding αPD-L1 to this regimen results in rejection of 65% of preimplanted tumors vs. 10% with CTLA-4 blockade alone. Combination PD-1 and CTLA-4 blockade increases effector T-cell (Teff) infiltration, resulting in highly advantageous Teff-to-regulatory T-cell ratios with the tumor. The fraction of tumor-infiltrating Teffs expressing CTLA-4 and PD-1 increases, reflecting the proliferation and accumulation of cells that would otherwise be anergized. Combination blockade also synergistically increases Teff-to-myeloid-derived suppressor cell ratios within B16 melanomas. IFN-γ production increases in both the tumor and vaccine draining lymph nodes, as does the frequency of IFN-γ/TNF-α double-producing CD8+ T cells within the tumor. These results suggest that combination blockade of the PD-1/PD-L1- and CTLA-4-negative costimulatory pathways allows tumor-specific T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby shifting the tumor microenvironment from suppressive to inflammatory.


Journal of Clinical Investigation | 2006

CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells.

Sergio A. Quezada; Karl S. Peggs; Michael A. Curran; James P. Allison

CTL-associated antigen 4 (CTLA4) blockade releases inhibitory controls on T cell activation and proliferation, inducing antitumor immunity in both preclinical and early clinical trials. We examined the mechanisms of action of anti-CTLA4 and a GM-CSF-transduced tumor cell vaccine (Gvax) and their impact on the balance of effector T cells (Teffs) and Tregs in an in vivo model of B16/BL6 melanoma. Tumor challenge increased the frequency of Tregs in lymph nodes, and untreated tumors became infiltrated by CD4+Foxp3- and CD4+Foxp3+ T cells but few CD8+ T cells. Anti-CTLA4 did not deplete Tregs or permanently impair their function but acted in a cell-intrinsic manner on both Tregs and Teffs, allowing them to expand, most likely in response to self antigen. While Gvax primed the tumor-reactive Teff compartment, inducing activation, tumor infiltration, and a delay in tumor growth, the combination with CTLA4 blockade induced greater infiltration and a striking change in the intratumor balance of Tregs and Teffs that directly correlated with tumor rejection. The data suggest that Tregs control both CD4+ and CD8+ T cell activity within the tumor, highlight the importance of the intratumor ratio of effectors to regulators, and demonstrate inversion of the ratio and correlation with tumor rejection during Gvax/anti-CTLA4 immunotherapy.


Cancer immunology research | 2014

PD-L1 Expression in Triple-Negative Breast Cancer

Elizabeth A. Mittendorf; Anne V. Philips; Funda Meric-Bernstam; Na Qiao; Yun Wu; Susan M. Harrington; Xiaoping Su; Ying Wang; Ana M. Gonzalez-Angulo; Argun Akcakanat; Akhil Chawla; Michael A. Curran; Patrick Hwu; Padmanee Sharma; Jennifer K. Litton; Jeffrey J. Molldrem; Gheath Alatrash

Using tissue microarrays containing 105 triple-negative breast cancer (TNBC) specimens, Mittendorf and colleagues show that 20% of the TNBC specimens express PD-L1, half have lost PTEN, and inhibitors of PI3K pathway decrease PD-L1 expression, providing a rationale for therapeutic targeting of PD-L1 for TNBC. Early-phase trials targeting the T-cell inhibitory molecule programmed cell death ligand 1 (PD-L1) have shown clinical efficacy in cancer. This study was undertaken to determine whether PD-L1 is overexpressed in triple-negative breast cancer (TNBC) and to investigate the loss of PTEN as a mechanism of PD-L1 regulation. The Cancer Genome Atlas (TCGA) RNA sequencing data showed significantly greater expression of the PD-L1 gene in TNBC (n = 120) compared with non-TNBC (n = 716; P < 0.001). Breast tumor tissue microarrays were evaluated for PD-L1 expression, which was present in 19% (20 of 105) of TNBC specimens. PD-L1+ tumors had greater CD8+ T-cell infiltrate than PD-L1− tumors (688 cells/mm vs. 263 cells/mm; P < 0.0001). To determine the effect of PTEN loss on PD-L1 expression, stable cell lines were generated using PTEN short hairpin RNA (shRNA). PTEN knockdown led to significantly higher cell-surface PD-L1 expression and PD-L1 transcripts, suggesting transcriptional regulation. Moreover, phosphoinositide 3-kinase (PI3K) pathway inhibition using the AKT inhibitor MK-2206 or rapamycin resulted in decreased PD-L1 expression, further linking PTEN and PI3K signaling to PD-L1 regulation. Coculture experiments were performed to determine the functional effect of altered PD-L1 expression. Increased PD-L1 cell surface expression by tumor cells induced by PTEN loss led to decreased T-cell proliferation and increased apoptosis. PD-L1 is expressed in 20% of TNBCs, suggesting PD-L1 as a therapeutic target in TNBCs. Because PTEN loss is one mechanism regulating PD-L1 expression, agents targeting the PI3K pathway may increase the antitumor adaptive immune responses. Cancer Immunol Res; 2(4); 361–70. ©2014 AACR.


PLOS ONE | 2011

Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production

Michael A. Curran; Myoungjoo V. Kim; Welby Montalvo; Aymen Al-Shamkhani; James P. Allison

Background The co-inhibitory receptor Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) attenuates immune responses and prevent autoimmunity, however, tumors exploit this pathway to evade the host T-cell response. The T-cell co-stimulatory receptor 4-1BB is transiently upregulated on T-cells following activation and increases their proliferation and inflammatory cytokine production when engaged. Antibodies which block CTLA-4 or which activate 4-1BB can promote the rejection of some murine tumors, but fail to cure poorly immunogenic tumors like B16 melanoma as single agents. Methodology/Principal Findings We find that combining αCTLA-4 and α4-1BB antibodies in the context of a Flt3-ligand, but not a GM-CSF, based B16 melanoma vaccine promoted synergistic levels of tumor rejection. 4-1BB activation elicited strong infiltration of CD8+ T-cells into the tumor and drove the proliferation of these cells, while CTLA-4 blockade did the same for CD4+ effector T-cells. Anti-4-1BB also depressed regulatory T-cell infiltration of tumors. 4-1BB activation strongly stimulated inflammatory cytokine production in the vaccine and tumor draining lymph nodes and in the tumor itself. The addition of CTLA-4 blockade further increased IFN-γ production from CD4+ effector T-cells in the vaccine draining node and the tumor. Anti 4-1BB treatment, with or without CTLA-4 blockade, induced approximately 75% of CD8+ and 45% of CD4+ effector T-cells in the tumor to express the killer cell lectin-like receptor G1 (KLRG1). Tumors treated with combination antibody therapy showed 1.7-fold greater infiltration by these KLRG1+CD4+ effector T-cells than did those treated with α4-1BB alone. Conclusions/Significance This study shows that combining T-cell co-inhibitory blockade with αCTLA-4 and active co-stimulation with α4-1BB promotes rejection of B16 melanoma in the context of a suitable vaccine. In addition, we identify KLRG1 as a useful marker for monitoring the anti-tumor immune response elicited by this therapy. These findings should aid in the design of future trials for the immunotherapy of melanoma.


Journal of Experimental Medicine | 2013

Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin

Michael A. Curran; Theresa L. Geiger; Welby Montalvo; Myoungjoo V. Kim; Steven L. Reiner; Aymen Al-Shamkhani; Joseph C. Sun; James P. Allison

Anti–4-1BB treatment of tumor-bearing or intracellular pathogen infected mice generates a population of Eomes+KLRG1+ tumor infiltrating T cells that have enhanced cytotoxic activity.


Frontiers in Oncology | 2015

4-1BB agonists: multi-potent potentiators of tumor immunity

Todd Bartkowiak; Michael A. Curran

Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized.


JCI insight | 2016

Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

Konrad Gabrusiewicz; Benjamin Rodriguez; Jun Wei; Yuuri Hashimoto; Luke M. Healy; Sourindra Maiti; Ginu Thomas; Shouhao Zhou; Qianghu Wang; Ahmed Elakkad; Brandon D. Liebelt; Nasser K. Yaghi; Ravesanker Ezhilarasan; Neal Huang; Jeffrey S. Weinberg; Sujit S. Prabhu; Ganesh Rao; Raymond Sawaya; Lauren A. Langford; Janet M. Bruner; Gregory N. Fuller; Amit Bar-Or; Wei Li; Rivka R. Colen; Michael A. Curran; Krishna P. Bhat; Jack P. Antel; Laurence J.N. Cooper; Erik P. Sulman; Amy B. Heimberger

Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages.


Clinical Cancer Research | 2017

Ipilimumab with Stereotactic Ablative Radiation Therapy: Phase I Results and Immunologic Correlates from Peripheral T Cells

Chad Tang; James W. Welsh; Patricia M. de Groot; Erminia Massarelli; Joe Y. Chang; Kenneth R. Hess; Sreyashi Basu; Michael A. Curran; Maria E. Cabanillas; Vivek Subbiah; Siqing Fu; Apostolia M. Tsimberidou; Daniel D. Karp; Daniel R. Gomez; Adi Diab; Ritsuko Komaki; John V. Heymach; Padmanee Sharma; Aung Naing; David S. Hong

Purpose: Little prospective data are available on clinical outcomes and immune correlates from combination radiation and immunotherapy. We conducted a phase I trial (NCT02239900) testing stereotactic ablative radiotherapy (SABR) with ipilimumab. Experimental Design: SABR was given either concurrently (1 day after the first dose) or sequentially (1 week after the second dose) with ipilimumab (3 mg/kg every 3 weeks for 4 doses) to five treatment groups: concurrent 50 Gy (in 4 fractions) to liver; sequential 50 Gy (in 4 fractions) to liver; concurrent 50 Gy (in 4 fractions) to lung; sequential 50 Gy (in 4 fractions) to lung; and sequential 60 Gy (in 10 fractions) to lung or liver. MTD was determined with a 3 + 3 dose de-escalation design. Immune marker expression was assessed by flow cytometry. Results: Among 35 patients who initiated ipilimumab, 2 experienced dose-limiting toxicity and 12 (34%) grade 3 toxicity. Response outside the radiation field was assessable in 31 patients. Three patients (10%) exhibited partial response and 7 (23%) experienced clinical benefit (defined as partial response or stable disease lasting ≥6 months). Clinical benefit was associated with increases in peripheral CD8+ T cells, CD8+/CD4+ T-cell ratio, and proportion of CD8+ T cells expressing 4-1BB and PD1. Liver (vs. lung) irradiation produced greater T-cell activation, reflected as increases in the proportions of peripheral T cells expressing ICOS, GITR, and 4-1BB. Conclusions: Combining SABR and ipilimumab was safe with signs of efficacy, peripheral T-cell markers may predict clinical benefit, and systemic immune activation was greater after liver irradiation. Clin Cancer Res; 23(6); 1388–96. ©2016 AACR.


Transplantation | 2002

Efficient transduction of pancreatic islets by feline immunodeficiency virus vectors

Michael A. Curran; M. Sofia Ochoa; R. Damaris Molano; Antonello Pileggi; Luca Inverardi; Norma S. Kenyon; Garry P. Nolan; Camillo Ricordi; Elizabeth S. Fenjves

Background. Pancreatic islets transplanted into immunocompetent diabetic subjects are rapidly lost to apoptotic or lytic death or both. Genetic engineering of islets before transplantation with protective genes may enhance their posttransplantation survival. Accomplishing this goal requires the development of a safe, efficient vector for islet gene delivery. Methods. The ability of feline immunodeficiency virus (FIV) vectors to transfer a green fluorescent protein (GFP) gene to NIT-1 cells and primary islets was measured and compared with murine leukemia virus (MLV) and human immunodeficiency virus (HIV) vectors. Islets were examined using confocal microscopy to determine the extent and pattern of infection. Toxicity of the procedure was assessed via measurement of glucose stimulation indices and by reversion of diabetic mice using either FIV-infected or control islet transplants. Results. FIV effectively transduces islets with no untoward effect on the insulin secretion capacity of the &bgr; cells. When FIV, HIV, and MLV GFP vectors were standardized to the same 293 cell titer and used to infect NIT-1 cells or whole islets, the FIV transduced equal or greater numbers of cells relative to the HIV vector and significantly more than the MLV vector. Islets transduced with FIV GFP were transplanted in a murine model for diabetes and were shown to revert diabetes and express GFP 4 weeks after transduction and 3 weeks after transplantation. Conclusions. FIV transduction is a nontoxic and efficient method to genetically modify pancreatic islets and may prove promising for delivering genes to augment islet survival after transplantation.


Methods of Molecular Biology | 2004

Lentiviral Vectors for the Delivery of DNA into Mammalian Cells

Roland Wolkowicz; Garry P. Nolan; Michael A. Curran

Vectors derived from oncoretroviruses, represented by the prototype Moloney murine leukemia virus (MMLV), are powerful tools for gene transfer into mammalian cells. Vectors derived from such viruses are able to carry an insert of up to 6.5 kb. Because Retroviridae and derived vectors insert their genome into the host chromosome, the transgene delivered by these viruses are stably expressed in the infected cells. From a safety standpoint, the vectors are designed to eliminate any need to carry viral genes or associated toxicities into the host cell. This also substantially reduces their potential immunogenicity. Finally, the titers achieved with these vectors can be very high, yielding efficient infection in a broad range of cell types.

Collaboration


Dive into the Michael A. Curran's collaboration.

Top Co-Authors

Avatar

James P. Allison

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Todd Bartkowiak

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Casey Ager

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Midan Ai

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ashvin R. Jaiswal

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pratha Budhani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jedd D. Wolchok

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Margaret K. Callahan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge