Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Ferguson is active.

Publication


Featured researches published by Michael A. Ferguson.


PLOS ONE | 2013

An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging

Jared A. Nielsen; Brandon A. Zielinski; Michael A. Ferguson; Janet E. Lainhart; Jeffrey S. Anderson

Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.


American Journal of Neuroradiology | 2011

Reproducibility of Single-Subject Functional Connectivity Measurements

Jeffrey S. Anderson; Michael A. Ferguson; Melissa P. Lopez-Larson; Deborah A. Yurgelun-Todd

BACKGROUND AND PURPOSE: Measurements of resting-state functional connectivity have increasingly been used for characterization of neuropathologic and neurodevelopmental populations. We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test. MATERIALS AND METHODS: We obtained 100 five-minute BOLD scans on a single subject, divided into 10 sessions of 10 scans each, with the subject at rest or while watching video clips of cartoons. These data were compared with resting-state BOLD scans from 36 healthy control subjects by evaluating the correlation between each pair of 64 small spheric regions of interest obtained from a published functional brain parcellation. RESULTS: Single-subject and group data converged to reliable estimates of individual and population connectivity values proportional to 1 / sqrt(n). Dramatic improvements in reliability were seen by using ≤25 minutes of imaging time, with smaller improvements for additional time. Functional connectivity “fingerprints” for the individual and population began diverging at approximately 15 minutes of imaging time, with increasing reliability even at 4 hours of imaging time. Twenty-five minutes of BOLD imaging time was required before any individual connections could reliably discriminate an individual from a group of healthy control subjects. A classifier discriminating scans during which our subject was resting or watching cartoons was 95% accurate at 10 minutes and 100% accurate at 15 minutes of imaging time. CONCLUSIONS: An individual subject and control population converged to reliable different functional connectivity profiles that were task-modulated and could be discriminated with sufficient imaging time.


Brain | 2011

Connectivity Gradients Between the Default Mode and Attention Control Networks

Jeffrey S. Anderson; Michael A. Ferguson; Melissa P. Lopez-Larson; Deborah A. Yurgelun-Todd

Functional imaging studies have shown reduced activity within the default mode network during attention-demanding tasks. The network circuitry underlying this suppression remains unclear. Proposed hypotheses include an attentional switch in the right anterior insula and reciprocal inhibition between the default mode and attention control networks. We analyzed resting state blood oxygen level dependent (BOLD) data from 1278 subjects from 26 sites and constructed whole-brain maps of functional connectivity between 7266 regions of interest (ROIs) covering the gray matter at ~5 mm resolution. ROIs belonging to the default mode network and attention control network were identified based on correlation to six published seed locations. Spatial heterogeneity of correlation between the default mode and attention control networks was observed, with smoothly varying gradients in every hub of both networks that ranged smoothly from weakly but significantly anticorrelated to positively correlated. Such gradients were reproduced in 3 separate groups of subjects. Anticorrelated subregions were identified in major hubs of both networks. Between-network connectivity gradients strengthen with age during late adolescence and early adulthood, with associated sharpening of the boundaries of the default mode network, integration of the insula and cingulate with frontoparietal attentional regions, and decreasing correlation between the default mode and attention control networks with age.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Topographic maps of multisensory attention

Jeffrey S. Anderson; Michael A. Ferguson; Melissa P. Lopez-Larson; Deborah A. Yurgelun-Todd

The intraparietal sulcus (IPS) region is uniquely situated at the intersection of visual, somatosensory, and auditory association cortices, ideally located for processing of multisensory attention. We examined the internal architecture of the IPS region and its connectivity to other regions in the dorsal attention and cinguloinsular networks using maximal connectivity clustering. We show with resting state fMRI data from 58 healthy adolescent and young adult volunteers that points of maximal connectivity between the IPS and other regions in the dorsal attention and cinguloinsular networks are topographically organized, with at least seven maps of the IPS region in each hemisphere. Distinct clusters of the IPS exhibited differential connectivity to auditory, visual, somatosensory, and default mode networks, suggesting local specialization within the IPS region for different sensory modalities. In an independent task activation paradigm with 16 subjects, attention to different sensory modalities showed similar functional specialization within the left intraparietal sulcus region. The default mode network, in contrast, did not show a topographical relationship between regions in the network, but rather maximal connectivity in each region to a single central cluster of the other regions. The topographical architecture of multisensory attention may represent a mechanism for specificity in top-down control of attention from dorsolateral prefrontal and lateral orbitofrontal cortex and may represent an organizational unit for multisensory representations in the brain.


Developmental Cognitive Neuroscience | 2011

Local Brain Connectivity and Associations with Gender and Age

Melissa P. Lopez-Larson; Jeffrey S. Anderson; Michael A. Ferguson; Deborah A. Yurgelun-Todd

Regional homogeneity measures synchrony of resting-state brain activity in neighboring voxels, or local connectivity. The effects of age and gender on local connectivity in healthy subjects are unknown. We performed regional homogeneity analyses on resting state BOLD time series data acquired from 58 normal, healthy participants, ranging in age from 11 to 35 (mean 18.1 ± 5.0 years, 32 males). Regional homogeneity was found to be highest for gray matter, with brain regions within the default mode network having the highest local connectivity values. There was a general decrease in regional homogeneity with age with the greatest reduction seen in the anterior cingulate and temporal lobe. Greater female local connectivity in the right hippocampus and amygdala was also noted, regardless of age. These findings suggest that local connectivity at the millimeter scale decreases during development as longer connections are formed, and underscores the importance of examining gender differences in imaging studies of healthy and clinical populations.


NeuroImage: Clinical | 2013

Abnormal brain synchrony in Down Syndrome

Jeffrey S. Anderson; Jared A. Nielsen; Michael A. Ferguson; Melissa C. Burback; Elizabeth T. Cox; Li Dai; Guido Gerig; Jamie O. Edgin; Julie R. Korenberg

Down Syndrome is the most common genetic cause for intellectual disability, yet the pathophysiology of cognitive impairment in Down Syndrome is unknown. We compared fMRI scans of 15 individuals with Down Syndrome to 14 typically developing control subjects while they viewed 50 min of cartoon video clips. There was widespread increased synchrony between brain regions, with only a small subset of strong, distant connections showing underconnectivity in Down Syndrome. Brain regions showing negative correlations were less anticorrelated and were among the most strongly affected connections in the brain. Increased correlation was observed between all of the distributed brain networks studied, with the strongest internetwork correlation in subjects with the lowest performance IQ. A functional parcellation of the brain showed simplified network structure in Down Syndrome organized by local connectivity. Despite increased interregional synchrony, intersubject correlation to the cartoon stimuli was lower in Down Syndrome, indicating that increased synchrony had a temporal pattern that was not in response to environmental stimuli, but idiosyncratic to each Down Syndrome subject. Short-range, increased synchrony was not observed in a comparison sample of 447 autism vs. 517 control subjects from the Autism Brain Imaging Exchange (ABIDE) collection of resting state fMRI data, and increased internetwork synchrony was only observed between the default mode and attentional networks in autism. These findings suggest immature development of connectivity in Down Syndrome with impaired ability to integrate information from distant brain regions into coherent distributed networks.


PLOS ONE | 2013

BOLD Granger Causality Reflects Vascular Anatomy

J. Taylor Webb; Michael A. Ferguson; Jared A. Nielsen; Jeffrey S. Anderson

A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project) to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7–40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain’s functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group), as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.


Brain and behavior | 2016

Reliability and reproducibility of individual differences in functional connectivity acquired during task and resting state.

Lubdha M. Shah; Justin A. Cramer; Michael A. Ferguson; Rasmus M. Birn; Jeffrey S. Anderson

Application of fMRI connectivity metrics as diagnostic biomarkers at the individual level will require reliability, sensitivity and specificity to longitudinal changes in development, aging, neurocognitive, and behavioral performance and pathologies. Such metrics have not been well characterized for recent advances in BOLD acquisition.


Human Brain Mapping | 2014

Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.

Jeffrey S. Anderson; Brandon A. Zielinski; Jared A. Nielsen; Michael A. Ferguson

Very low‐frequency blood oxygen level‐dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7–30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low‐frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low‐frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large‐scale brain networks. Hum Brain Mapp 35:1273–1283, 2014.


NeuroImage | 2012

Dynamical stability of intrinsic connectivity networks.

Michael A. Ferguson; Jeffrey S. Anderson

Functional connectivity MRI (fcMRI) has become a widely used technique in recent years for measuring the static correlation of activity between cortical regions. Using a publicly available resting state dataset (n = 961 subjects), we obtained high spatial-resolution maps of functional connectivity between a lattice of 7266 regions covering the gray matter. Average whole brain functional correlations were calculated, with high reproducibility within the dataset and across sites. Since correlation measures not only represent pairwise connectivity information, but also shared inputs from other brain regions, we approximate pairwise connection strength by representing each region as a linear combination of the others by performing a Cholesky decomposition of the pairwise correlation matrix. We then used this weighted connection strength between regions to iterate relative brain activity in discrete temporal steps, beginning both with random initial conditions, and with initial conditions reflecting intrinsic connectivity networks using each region as a seed. In whole brain simulations based on weighted connectivity from healthy adult subjects (mean age 27.3), there was consistent convergence to one of two inverted states, one representing high activity in the default mode network, the other representing low relative activity in the default mode network. Metastable intermediate states in our simulation corresponded to combinations of characterized functional networks. Convergence to a final state was slowest for initial conditions on the borders of the default mode network.

Collaboration


Dive into the Michael A. Ferguson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge