Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Forbes is active.

Publication


Featured researches published by Michael A. Forbes.


Journal of Research of the National Institute of Standards and Technology | 2008

Refining the in-parameter-order strategy for constructing covering arrays

Michael A. Forbes; Jim Lawrence; Yu Lei; Raghu N. Kacker; D. Richard Kuhn

Covering arrays are structures for well-representing extremely large input spaces and are used to efficiently implement blackbox testing for software and hardware. This paper proposes refinements over the In-Parameter-Order strategy (for arbitrary t). When constructing homogeneous-alphabet covering arrays, these refinements reduce runtime in nearly all cases by a factor of more than 5 and in some cases by factors as large as 280. This trend is increasing with the number of columns in the covering array. Moreover, the resulting covering arrays are about 5 % smaller. Consequently, this new algorithm has constructed many covering arrays that are the smallest in the literature. A heuristic variant of the algorithm sometimes produces comparably sized covering arrays while running significantly faster.


foundations of computer science | 2013

Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching Programs

Michael A. Forbes; Amir Shpilka

We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing algorithms (PIT) for algebraic branching programs (ABPs) that are read-once and oblivious. This class has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka), but prior to this work there was no known such black-box algorithm. The main result of this work gives the first quasi-polynomial sized hitting sets for size S circuits from this class, when the order of the variables is known. As our hitting set is of size exp(lg2 S), this is analogous (in the terminology of boolean pseudorandom ness) to a seed-length of lg2 S, which is the seed length of the pseudorandom generators of Nisan and Impagliazzo-Nisan-Wigderson for read-once oblivious boolean branching programs. Thus our work can be seen as an algebraic analogue of these foundational results in boolean pseudorandom ness. Our results are stronger for branching programs of bounded width, where we give a hitting set of size exp(lg2 S/lglg S), corresponding to a seed length of lg2 S/lglg S. This is in stark contrast to the known results for read-once oblivious boolean branching programs of bounded width, where no pseudorandom generator (or hitting set) with seed length o(lg2 S) is known. Thus, while our work is in some sense an algebraic analogue of existing boolean results, the two regimes seem to have non-trivial differences. In follow up work, we strengthened a result of Mulmuley, and showed that derandomizing a particular case of the No ether Normalization Lemma is reducible to black-box PIT of read-once oblivious ABPs. Using the results of the present work, this gives a derandomization of No ether Normalization in that case, which Mulmuley conjectured would difficult due to its relations to problems in algebraic geometry. We also show that several other circuit classes can be black-box reduced to read-once oblivious ABPs, including set-multilinear ABPs (a generalization of depth-3 set-multilinear formulas), non-commutative ABPs (generalizing non-commutative formulas), and (semi-)diagonal depth-4 circuits (as introduced by Saxena). For set-multilinear ABPs and non-commutative ABPs, we give quasi-polynomial-time black-box PIT algorithms, where the latter case involves evaluations over the algebra of (D+1)x(D+1) matrices, where D is the depth of the ABP. For (semi-)diagonal depth-4 circuits, we obtain a black-box PIT algorithm (over any characteristic) whose run-time is quasi-polynomial in the runtime of Saxenas white-box algorithm, matching the concurrent work of Agrawal, Saha, and Saxena. Finally, by combining our results with the reconstruction algorithm of Klivans and Shpilka, we obtain deterministic reconstruction algorithms for the above circuit classes.


symposium on the theory of computing | 2012

On identity testing of tensors, low-rank recovery and compressed sensing

Michael A. Forbes; Amir Shpilka

We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing algorithms for depth-3 set-multilinear circuits (over arbitrary fields). This class of circuits has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka [36]), but has no known such black-box algorithm. We recast this problem as a question of finding a low-dimensional subspace H, spanned by rank 1 tensors, such that any non-zero tensor in the dual space ker(H) has high rank. We obtain explicit constructions of essentially optimal-size hitting sets for tensors of degree 2 (matrices), and obtain the first quasi-polynomial sized hitting sets for arbitrary tensors. We also show connections to the task of performing low-rank recovery of matrices, which is studied in the field of compressed sensing. Low-rank recovery asks (say, over R) to recover a matrix M from few measurements, under the promise that M is rank ≤ r. In this work, we restrict our attention to recovering matrices that are exactly rank ≤ r using deterministic, non-adaptive, linear measurements, that are free from noise. Over R, we provide a set (of size 4nr) of such measurements, from which M can be recovered in O(rn2+r3n) field operations, and the number of measurements is essentially optimal. Further, the measurements can be taken to be all rank-1 matrices, or all sparse matrices. To the best of our knowledge no explicit constructions with those properties were known prior to this work. We also give a more formal connection between low-rank recovery and the task of sparse (vector) recovery: any sparse-recovery algorithm that exactly recovers vectors of length n and sparsity 2r, using m non-adaptive measurements, yields a low-rank recovery scheme for exactly recovering n x n matrices of rank ≤ r, making 2nm non-adaptive measurements. Furthermore, if the sparse-recovery algorithm runs in time τ, then the low-rank recovery algorithm runs in time O(rn2+nτ). We obtain this reduction using linear-algebraic techniques, and not using convex optimization, which is more commonly seen in compressed sensing algorithms. Finally, we also make a connection to rank-metric codes, as studied in coding theory. These are codes with codewords consisting of matrices (or tensors) where the distance of matrices M and N is rank(M-N), as opposed to the usual hamming metric. We obtain essentially optimal-rate codes over matrices, and provide an efficient decoding algorithm. We obtain codes over tensors as well, with poorer rate, but still with efficient decoding.


symposium on the theory of computing | 2014

Hitting sets for multilinear read-once algebraic branching programs, in any order

Michael A. Forbes; Ramprasad Saptharishi; Amir Shpilka

We give deterministic black-box polynomial identity testing algorithms for multilinear read-once oblivious algebraic branching programs (ROABPs), in nO(log2 n) time. Further, our algorithm is oblivious to the order of the variables. This is the first sub-exponential time algorithm for this model. Furthermore, our result has no known analogue in the model of read-once oblivious boolean branching programs with unknown order. We obtain our results by recasting, and improving upon, the ideas of Agrawal, Saha and Saxena [ASS13]. We phrase the ideas in terms of rank condensers and Wronskians, and show that our results improve upon the classical multivariate Wronskian, which may be of independent interest. In addition, we give the first nO(lg lg n) black-box polynomial identity testing algorithm for the so called model of diagonal circuits. This result improves upon the nΘ(lg n)-time algorithms given by Agrawal, Saha and Saxena [ASS13], and Forbes and Shpilka [FS13b] for this class. More generally, our result holds for any model computing polynomials whose partial derivatives (of all orders) span a low dimensional linear space.


Discrete Mathematics | 2014

On the locality of codeword symbols in non-linear codes

Michael A. Forbes; Sergey Yekhanin

Coordinate i of an error-correcting code has locality r if its value is determined by some r other coordinates. Recently an optimal trade-off between information locality of linear codes, code distance, and redundancy has been obtained. Furthermore, for linear codes meeting this trade-off, structure theorems were derived. In this work we generalize the trade-off and structure theorems to non-linear codes.


international workshop and international workshop on approximation, randomization, and combinatorial optimization. algorithms and techniques | 2013

Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing

Michael A. Forbes; Amir Shpilka

Mulmuley [Mul12a] recently gave an explicit version of Noether’s Normalization lemma for ring of invariants of matrices under simultaneous conjugation, under the conjecture that there are deterministic black-box algorithms for polynomial identity testing (PIT). He argued that this gives evidence that constructing such algorithms for PIT is beyond current techniques. In this work, we show this is not the case. That is, we improve Mulmuley’s reduction and correspondingly weaken the conjecture regarding PIT needed to give explicit Noether Normalization. We then observe that the weaker conjecture has recently been nearly settled by the authors ([FS12]), who gave quasipolynomial size hitting sets for the class of read-once oblivious algebraic branching programs (ROABPs). This gives the desired explicit Noether Normalization unconditionally, up to quasipolynomial factors. As a consequence of our proof we give a deterministic parallel polynomial-time algorithm for deciding if two matrix tuples have intersecting orbit closures, under simultaneous conjugation. We also study the strength of conjectures that Mulmuley requires to obtain similar results as ours. We prove that his conjectures are stronger, in the sense that the computational model he needs PIT algorithms for is equivalent to the well-known algebraic branching program (ABP) model, which is provably stronger than the ROABP model. Finally, we consider the depth-3 diagonal circuit model as defined by Saxena [Sax08], as PIT algorithms for this model also have implications in Mulmuley’s work. Previous work (such as [ASS12] and [FS12]) have given quasipolynomial size hitting sets for this model. In this work, we give a much simpler construction of such hitting sets, using techniques of Shpilka and Volkovich [SV09].


conference on computational complexity | 2016

Identity testing and lower bounds for read- k oblivious algebraic branching programs

Matthew Anderson; Michael A. Forbes; Ramprasad Saptharishi; Amir Shpilka; Ben Lee Volk

Read-k oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ROABPs). In this work, we give an exponential lower bound of exp(n/kO(k)) on the width of any read-k oblivious ABP computing some explicit multilinear polynomial f that is computed by a polynomial size depth-3 circuit. We also study the polynomial identity testing (PIT) problem for this model and obtain a white-box subexponential-time PIT algorithm. The algorithm runs in time [EQUATION] and needs white box access only to know the order in which the variables appear in the ABP.


conference on computational complexity | 2016

Proof complexity lower bounds from algebraic circuit complexity

Michael A. Forbes; Amir Shpilka; Iddo Tzameret; Avi Wigderson

We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS), the algebraic proof system recently proposed by Grochow and Pitassi, where the circuits comprising the proof come from various restricted algebraic circuit classes. This mimics an established research direction in the boolean setting for subsystems of Extended Frege proofs, where proof-lines are circuits from restricted boolean circuit classes. Except one, all of the subsystems considered in this paper can simulate the well-studied Nullstellensatz proof system, and prior to this work there were no known lower bounds when measuring proof size by the algebraic complexity of the polynomials (except with respect to degree, or to sparsity). We give two general methods of converting certain algebraic lower bounds into proof complexity ones. Our methods require stronger notions of lower bounds, which lower bound a polynomial as well as an entire family of polynomials it defines. Our techniques are reminiscent of existing methods for converting boolean circuit lower bounds into related proof complexity results, such as feasible interpolation. We obtain the relevant types of lower bounds for a variety of classes (sparse polynomials, depth-3 powering formulas, read-once oblivious algebraic branching programs, and multilinear formulas), and infer the relevant proof complexity results. We complement our lower bounds by giving short refutations of the previously-studied subset-sum axiom using IPS subsystems, allowing us to conclude strict separations between some of these subsystems.


conference on computational complexity | 2016

Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

Michael A. Forbes; Mrinal Kumar; Ramprasad Saptharishi

We say that a circuit


Sigact News | 2015

Complexity Theory Column 88: Challenges in Polynomial Factorization1

Michael A. Forbes; Amir Shpilka

C

Collaboration


Dive into the Michael A. Forbes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Chiesa

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ramprasad Saptharishi

Chennai Mathematical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nitin Saxena

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Sumanta Ghosh

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Avi Wigderson

Institute for Advanced Study

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Richard Kuhn

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge