Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Janssen is active.

Publication


Featured researches published by Michael A. Janssen.


The Astrophysical Journal | 1993

Dipole anisotropy in the COBE DMR first year sky maps

A. Kogut; C. Lineweaver; George F. Smoot; C. L. Bennett; A. J. Banday; N. W. Boggess; Edward S. Cheng; G. De Amici; Dale J. Fixsen; G. Hinshaw; P. D. Jackson; Michael A. Janssen; P. Keegstra; K. Loewenstein; P. M. Lubin; John C. Mather; L. Tenorio; Ron Weiss; D. T. Wilkinson; E. L. Wright

We present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude ΔT=3.365±0.027 mK toward direction (l II , b II )=(264°.4±0°.3, 48°.4±0°.5). The implied velocity of the Local Group with respect to the CMB rest frame is v LG =627±22 km s −1 toward (l II , b II )=(276°±3°, 30°±3°). DMR has also mapped the dipole anisotropy resulting from the Earths orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature T 0 at 31.5, 53, and 90 GHz, T 0 =2.75±0.05 KWe present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude Delta T = 3.365 +/-0.027 mK toward direction (l,b) = (264.4 +/- 0.3 deg, 48.4 +/- 0.5 deg). The implied velocity of the Local Group with respect to the CMB rest frame is 627 +/- 22 km/s toward (l,b) = (276 +/- 3 deg, 30 +/- 3 deg). DMR has also mapped the dipole anisotropy resulting from the Earths orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature at 31.5, 53, and 90 GHz, to be 2.75 +/- 0.05 K.


The Astrophysical Journal | 1992

The COBE mission - its design and performance two years after launch

N. W. Boggess; John C. Mather; Ron Weiss; C. L. Bennett; Edward S. Cheng; E. Dwek; Samuel Gulkis; Michael G. Hauser; Michael A. Janssen; T. Kelsall; S. S. Meyer; S. H. Moseley; Thomas L. Murdock; Richard A. Shafer; R. F. Silverberg; George F. Smoot; D. T. Wilkinson; E. L. Wright

COBE, NASAs first space mission devoted primarily to cosmology, carries three scientific instruments to make precise measurements of the spectrum and anisotropy of the cosmic microwave background radiation on angular scales greater than 7° and to conduct a search for a diffuse cosmic infrared background radiation with 0°.7 angular resolution. The mission goal is to make these measurements to the limit imposed by the local astrophysical foregrounds. The COBE instruments cover the wavelength range from 1.2 μm to 1 cm. The instruments are calibrated periodically in orbit using internal calibrators and celestial standards


Science | 2015

Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko

Samuel Gulkis; Mark Allen; Paul von Allmen; Gerard Beaudin; N. Biver; Dominique Bockelee-Morvan; Mathieu Choukroun; Jacques Crovisier; B. Davidsson; P. Encrenaz; Therese Encrenaz; Margaret A. Frerking; Paul Hartogh; Mark Hofstadter; Wing-Huen Ip; Michael A. Janssen; C. Jarchow; Stephen J. Keihm; Seungwon Lee; Emmanuel Lellouch; Cedric Leyrat; L. Rezac; F. Peter Schloerb; Thomas R. Spilker

Heat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.5 mm wavelengths, and spectra of water vapor. The total H2O production rate varied from 0.3 kg s–1 in early June 2014 to 1.2 kg s–1 in late August and showed periodic variations related to nucleus rotation and shape. Water outgassing was localized to the “neck” region of the comet. Subsurface temperatures showed seasonal and diurnal variations, which indicated that the submillimeter radiation originated at depths comparable to the diurnal thermal skin depth. A low thermal inertia (~10 to 50 J K–1 m–2 s–0.5), consistent with a thermally insulating powdered surface, is inferred.


IEEE Transactions on Geoscience and Remote Sensing | 1995

TOPEX/Poseidon microwave radiometer (TMR). III. Wet troposphere range correction algorithm and pre-launch error budget

Stephen J. Keihm; Michael A. Janssen; Christopher S. Ruf

For pt.II see ibid., vol.33, no.1, p.138-46 (1995). The sole mission function of the TOPEX/Poseidon microwave radiometer (TMR) is to provide corrections for the altimeter range errors induced by the highly variable atmospheric water vapor content. The three TMR frequencies are shown to be near-optimum for measuring the vapor-induced path delay within an environment of variable cloud cover and variable sea surface flux background. After a review of the underlying physics relevant to the prediction of 5-40 GHz nadir-viewing microwave brightness temperatures, the authors describe the development of the statistical, two-step algorithm used for the TMR retrieval of path delay. Test simulations are presented which demonstrate the uniformity of algorithm performance over a range of cloud liquid and sea surface wind speed conditions. The results indicate that the inherent algorithm error (assuming noise free measurements and an exact physical model) is less than 0.4 cm of retrieved path delay for a global representation of atmospheric conditions. An algorithm error budget is developed which predicts an overall algorithm accuracy of 0.9 cm when modeling uncertainties are included. When combined with expected TMR antenna and brightness temperature accuracies, an overall measurement accuracy of 1.2 cm for the wet troposphere range correction is predicted. >


IEEE Transactions on Geoscience and Remote Sensing | 1995

TOPEX/Poseidon Microwave Radiometer (TMR). I. Instrument description and antenna temperature calibration

Christopher S. Ruf; Stephen J. Keihm; Michael A. Janssen

The TOPEX/Poseidon microwave radiometer (TMR) is a three-frequency radiometer flown on the TOPEX/Poseidon (T/P) satellite in low Earth orbit. It operates at 18, 21, and 37 GHz in a nadir-only viewing direction which is co-aligned with the T/P radar altimeters. The TMR monitors and corrects for the propagation path delay of the altimeter radar signal due to water vapor and nonprecipitating liquid water in the atmosphere. The paper describes the TMR instrument and the radiometric instrument calibration required to derive antenna temperature (T/sub A/) from the raw digital data. T/sub A/ precision of 0.4 K is predicted on orbit in all expected thermal environments, T/sub A/ accuracy of 0.5-0.6 K is expected following a post-launch field calibration campaign. These performance figures represent a significant improvement over those of the Seasat and Nimbus-G Scanning Multichannel Microwave Radiometer on which TMR is based. The improvements are the result of specific hardware design and calibration changes. Hardware changes include a redesigned feed horn, to reduce impedance mismatches, and the addition of radomes over the feed and sky horns, to reduce thermal variations. Calibration changes involve more extensive temperature cycling and data analysis during thermal/vacuum testing. >


Science | 2017

Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

S. J. Bolton; A. Adriani; Virgil Adumitroaie; Michael E. D. Allison; J. D. Anderson; Sushil K. Atreya; Jeremy Bloxham; Shannon T. Brown; J. E. P. Connerney; E. DeJong; William M. Folkner; Daniel Gautier; D. Grassi; S. Gulkis; Tristan Guillot; Candice J. Hansen; William B. Hubbard; L. Iess; A. P. Ingersoll; Michael A. Janssen; John Leif Jørgensen; Yohai Kaspi; Steven M. Levin; Chao Li; Jonathan I. Lunine; Y. Miguel; A. Mura; G. S. Orton; Tobias Owen; Michael A. Ravine

Juno swoops around giant Jupiter Jupiter is the largest and most massive planet in our solar system. NASAs Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Junos flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiters aurorae and plasma environment, both as Juno approached the planet and during its first close orbit. Science, this issue p. 821, p. 826 Juno’s first close pass over Jupiter provides answers and fresh questions about the giant planet. On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter’s poles show a chaotic scene, unlike Saturn’s poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth’s Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno’s measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter’s core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.


Nature | 2006

Titan Radar Mapper observations from Cassini's T3 fly-by

Charles Elachi; S. D. Wall; Michael A. Janssen; Ellen R. Stofan; Rosaly M. C. Lopes; R. Kirk; Ralph D. Lorenz; Jonathan I. Lunine; Federica Paganelli; L. Soderblom; C. Wood; Lauren C. Wye; Howard A. Zebker; Y. Z. Anderson; S. Ostro; M. Allison; R. A. Boehmer; Philip S. Callahan; P. Encrenaz; Enrico Flamini; G. Francescetti; Yonggyu Gim; G. Hamilton; Scott Hensley; William L. Johnson; K. D. Kelleher; D. Muhleman; G. Picardi; F. Posa; L. Roth

Cassinis Titan Radar Mapper imaged the surface of Saturns moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity.


Journal of Geophysical Research | 1994

TOPEX/POSEIDON microwave radiometer performance and in‐flight calibration

Christopher S. Ruf; Stephen J. Keihm; Bala Subramanya; Michael A. Janssen

Results of the in-flight calibration and performance evaluation campaign for the TOPEX/POSEIDON microwave radiometer (TMR) are presented. Intercomparisons are made between TMR and various sources of ground truth, including ground-based microwave water vapor radiometers, radiosondes, global climatological models, special sensor microwave imager data over the Amazon rain forest, and models of clear, calm, subpolar ocean regions. After correcting for preflight errors in the processing of thermal/vacuum data, relative channel offsets in the open ocean TMR brightness temperatures were noted at the ≈1 K level for the three TMR frequencies. Larger absolute offsets of 6–9 K over the rain forest indicated a ≈5% gain error in the three channel calibrations. This was corrected by adjusting the antenna pattern correction (APC) algorithm. A 10% scale error in the TMR path delay estimates, relative to coincident radiosondes, was corrected in part by the APC adjustment and in part by a 5% modification to the value assumed for the 22.235 GHz water vapor line strength in the path delay retrieval algorithm. After all in-flight corrections to the calibration, TMR global retrieval accuracy for the wet tropospheric range correction is estimated at 1.1 cm RMS with consistent performance under clear, cloudy, and windy conditions.


Geophysical Research Letters | 2010

Active shoreline of Ontario Lacus, Titan: A morphological study of the lake and its surroundings

S. D. Wall; Alexander G. Hayes; Charlie S. Bristow; Ralph D. Lorenz; Ellen R. Stofan; Jonathan I. Lunine; A. Le Gall; Michael A. Janssen; Rosaly M. C. Lopes; Lauren C. Wye; L. A. Soderblom; Philippe Paillou; Oded Aharonson; Howard A. Zebker; T. Farr; Giuseppe Mitri; R. L. Kirk; K. L. Mitchell; Claudia Notarnicola; Domenico Casarano; B. Ventura

Of more than 400 filled lakes now identified on Titan, the first and largest reported in the southern latitudes is Ontario Lacus, which is dark in both infrared and microwave. Here we describe recent observations including synthetic aperture radar (SAR) images by Cassinis radar instrument (λ = 2 cm) and show morphological evidence for active material transport and erosion. Ontario Lacus lies in a shallow depression, with greater relief on the southwestern shore and a gently sloping, possibly wave-generated beach to the northeast. The lake has a closed internal drainage system fed by Earth-like rivers, deltas and alluvial fans. Evidence for active shoreline processes, including the wave-modified lakefront and deltaic deposition, indicates that Ontario is a dynamic feature undergoing typical terrestrial forms of littoral modification.


Icarus | 1978

Evidence for the depletion of ammonia in the Uranus atmosphere

Samuel Gulkis; Michael A. Janssen; Edward T. Olsen

Abstract The theoretical disk brightness temperature spectra for Uranus are computed and compared with the observed microwave spectrum. It is shown that the emission observed at short centimeter wavelengths originates deep below the region where ammonia would ordinarily begin to condense. We demonstrate that this result is inconsistent with a wide range of atmospheric models in which the partial pressure of NH 3 is given by the vapor-pressure equation in the upper atmosphere. It is estimated that the ammonia mixing ratio must be less than 10 −6 in the 150 to 200°K temperature range. This is two orders of magnitude less than the expected mixing ratio based on solar abundances. The evidence for this depletion and a possible explanation are discussed.

Collaboration


Dive into the Michael A. Janssen's collaboration.

Top Co-Authors

Avatar

Ralph D. Lorenz

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rosaly M. C. Lopes

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Gulkis

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan W. Stiles

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip S. Callahan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge