Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Kennedy is active.

Publication


Featured researches published by Michael A. Kennedy.


Nature Structural & Molecular Biology | 2000

Structural proteomics of an archaeon.

Dinesh Christendat; Adelinda Yee; Akil Dharamsi; Yuval Kluger; Alexei Savchenko; John R. Cort; Valerie Booth; Cameron D. Mackereth; Vivian Saridakis; Irena Ekiel; Guennadi Kozlov; Karen L. Maxwell; Ning Wu; Lawrence P. McIntosh; Kalle Gehring; Michael A. Kennedy; Alan R. Davidson; Emil F. Pai; Mark Gerstein; A. Edwards; C.H. Arrowsmith

A set of 424 nonmembrane proteins from Methanobacterium thermoautotrophicum were cloned, expressed and purified for structural studies. Of these, ∼20% were found to be suitable candidates for X-ray crystallographic or NMR spectroscopic analysis without further optimization of conditions, providing an estimate of the number of the most accessible structural targets in the proteome. A retrospective analysis of the experimental behavior of these proteins suggested some simple relations between sequence and solubility, implying that data bases of protein properties will be useful in optimizing high throughput strategies. Of the first 10 structures determined, several provided clues to biochemical functions that were not detectable from sequence analysis, and in many cases these putative functions could be readily confirmed by biochemical methods. This demonstrates that structural proteomics is feasible and can play a central role in functional genomics.


Science | 2010

NMR structure determination for larger proteins using backbone-only data.

Srivatsan Raman; Oliver F. Lange; Paolo Rossi; Michael D. Tyka; Xu Wang; James M. Aramini; Gaohua Liu; Theresa A. Ramelot; Alexander Eletsky; Thomas Szyperski; Michael A. Kennedy; James H. Prestegard; Gaetano T. Montelione; David Baker

Examining the Backbone Determination of tertiary protein structures by nuclear magnetic resonance (NMR) currently relies heavily on side-chain NMR data. The assignment of side-chain atoms is challenging. In addition, proteins larger than 15 kilodaltons (kD) must be deuterated to improve resolution and this eliminates the possibility of measuring long-range interproton distance constraints. Now Raman et al. (p. 1014, published online 4 February) use backbone-only NMR data—chemical shifts, residual dipolar coupling, and backbone amide proton distances—available from highly deuterated proteins to guide conformational searching in the Rosetta structure prediction protocol. Using this new protocol, they were able to generate accurate structures for proteins of up to 25 kD. Protein structures can be determined by using the limited nuclear magnetic resonance information obtainable for larger proteins. Conventional protein structure determination from nuclear magnetic resonance data relies heavily on side-chain proton-to-proton distances. The necessary side-chain resonance assignment, however, is labor intensive and prone to error. Here we show that structures can be accurately determined without nuclear magnetic resonance (NMR) information on the side chains for proteins up to 25 kilodaltons by incorporating backbone chemical shifts, residual dipolar couplings, and amide proton distances into the Rosetta protein structure modeling methodology. These data, which are too sparse for conventional methods, serve only to guide conformational search toward the lowest-energy conformations in the folding landscape; the details of the computed models are determined by the physical chemistry implicit in the Rosetta all-atom energy function. The new method is not hindered by the deuteration required to suppress nuclear relaxation processes for proteins greater than 15 kilodaltons and should enable routine NMR structure determination for larger proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2002

An NMR approach to structural proteomics

Adelinda Yee; Xiaoqing Chang; Antonio Pineda-Lucena; Bin Wu; Anthony Semesi; Brian V. Le; Theresa A. Ramelot; Gregory Lee; Sudeepa Bhattacharyya; Pablo Gutiérrez; Aleksej Denisov; Chang-Hun Lee; John R. Cort; Guennadi Kozlov; Jack Liao; Grzegorz Finak; Limin Chen; David S. Wishart; Weontae Lee; Lawrence P. McIntosh; Kalle Gehring; Michael A. Kennedy; A. Edwards; C.H. Arrowsmith

The influx of genomic sequence information has led to the concept of structural proteomics, the determination of protein structures on a genome-wide scale. Here we describe an approach to structural proteomics of small proteins using NMR spectroscopy. Over 500 small proteins from several organisms were cloned, expressed, purified, and evaluated by NMR. Although there was variability among proteomes, overall 20% of these proteins were found to be readily amenable to NMR structure determination. NMR sample preparation was centralized in one facility, and a distributive approach was used for NMR data collection and analysis. Twelve structures are reported here as part of this approach, which allowed us to infer putative functions for several conserved hypothetical proteins.


Mbio | 2013

Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants

Ardythe L. Morrow; Anne J. Lagomarcino; Kurt Schibler; Diana H. Taft; Zhuoteng Yu; Bo Wang; Mekibib Altaye; Michael Wagner; Dirk Gevers; Doyle V. Ward; Michael A. Kennedy; Curtis Huttenhower; David S. Newburg

BackgroundNecrotizing enterocolitis (NEC) is a devastating intestinal disease that afflicts 10% of extremely preterm infants. The contribution of early intestinal colonization to NEC onset is not understood, and predictive biomarkers to guide prevention are lacking. We analyzed banked stool and urine samples collected prior to disease onset from infants <29 weeks gestational age, including 11 infants who developed NEC and 21 matched controls who survived free of NEC. Stool bacterial communities were profiled by 16S rRNA gene sequencing. Urinary metabolomic profiles were assessed by NMR.ResultsDuring postnatal days 4 to 9, samples from infants who later developed NEC tended towards lower alpha diversity (Chao1 index, P = 0.086) and lacked Propionibacterium (P = 0.009) compared to controls. Furthermore, NEC was preceded by distinct forms of dysbiosis. During days 4 to 9, samples from four NEC cases were dominated by members of the Firmicutes (median relative abundance >99% versus <17% in the remaining NEC and controls, P < 0.001). During postnatal days 10 to 16, samples from the remaining NEC cases were dominated by Proteobacteria, specifically Enterobacteriaceae (median relative abundance >99% versus 38% in the other NEC cases and 84% in controls, P = 0.01). NEC preceded by Firmicutes dysbiosis occurred earlier (onset, days 7 to 21) than NEC preceded by Proteobacteria dysbiosis (onset, days 19 to 39). All NEC cases lacked Propionibacterium and were preceded by either Firmicutes (≥98% relative abundance, days 4 to 9) or Proteobacteria (≥90% relative abundance, days 10 to 16) dysbiosis, while only 25% of controls had this phenotype (predictive value 88%, P = 0.001). Analysis of days 4 to 9 urine samples found no metabolites associated with all NEC cases, but alanine was positively associated with NEC cases that were preceded by Firmicutes dysbiosis (P < 0.001) and histidine was inversely associated with NEC cases preceded by Proteobacteria dysbiosis (P = 0.013). A high urinary alanine:histidine ratio was associated with microbial characteristics (P < 0.001) and provided good prediction of overall NEC (predictive value 78%, P = 0.007).ConclusionsEarly dysbiosis is strongly involved in the pathobiology of NEC. These striking findings require validation in larger studies but indicate that early microbial and metabolomic signatures may provide highly predictive biomarkers of NEC.


Journal of Biological Chemistry | 2005

The Shwachman-Bodian-Diamond Syndrome Protein Family Is Involved in RNA Metabolism

Alexei Savchenko; Nevan J. Krogan; John R. Cort; Elena Evdokimova; Jocelyne Lew; Adelinda A. Yee; Luis Sanchez-Pulido; Miguel A. Andrade; Alexey Bochkarev; James D. Watson; Michael A. Kennedy; Jack Greenblatt; Timothy Hughes; C.H. Arrowsmith; Johanna M. Rommens; A. Edwards

A combination of structural, biochemical, and genetic studies in model organisms was used to infer a cellular role for the human protein (SBDS) responsible for Shwachman-Bodian-Diamond syndrome. The crystal structure of the SBDS homologue in Archaeoglobus fulgidus, AF0491, revealed a three domain protein. The N-terminal domain, which harbors the majority of disease-linked mutations, has a novel three-dimensional fold. The central domain has the common winged helix-turn-helix motif, and the C-terminal domain shares structural homology with known RNA-binding domains. Proteomic analysis of the SBDS sequence homologue in Saccharomyces cerevisiae, YLR022C, revealed an association with over 20 proteins involved in ribosome biosynthesis. NMR structural genomics revealed another yeast protein, YHR087W, to be a structural homologue of the AF0491 N-terminal domain. Sequence analysis confirmed them as distant sequence homologues, therefore related by divergent evolution. Synthetic genetic array analysis of YHR087W revealed genetic interactions with proteins involved in RNA and rRNA processing including Mdm20/Nat3, Nsr1, and Npl3. Our observations, taken together with previous reports, support the conclusion that SBDS and its homologues play a role in RNA metabolism.


Magnetic Resonance in Chemistry | 2009

NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril).

Lindsey E. Romick-Rosendale; Aaron M. Goodpaster; Philip J. Hanwright; Neil B. Patel; Esther T. Wheeler; Deepika L. Chona; Michael A. Kennedy

The human gastrointestinal tract is home to hundreds of species of bacteria and the balance between beneficial and pathogenic bacteria plays a critical role in human health and disease. The human infant, however, is born with a sterile gut and the complex gastrointestinal host/bacterial ecosystem is only established after birth by rapid bacterial colonization. Composition of newborn gut flora depends on several factors including type of birth (Ceasarian or natural), manner of early feeding (breast milk or formula), and exposure to local, physical environment. Imbalance in normal, healthy gut flora contributes to several adult human diseases including inflammatory bowel (ulcerative colitis and Crohns disease) and Clostridium difficile associated disease, and early childhood diseases such as necrotizing enterocolitis. As a first step towards characterization of the role of gut bacteria in human health and disease, we conducted an 850 MHz 1H nuclear magnetic resonance spectroscopy study to monitor changes in metabolic profiles of urine and fecal extracts of 15 mice following gut sterilization by the broad‐spectrum antibiotic enrofloxacin (also known as Baytril). Ten metabolites changed in urine following enrofloxacin treatment including decreased acetate due to loss of microbial catabolism of sugars and polysaccharides, decreased trimethylamine‐N‐oxide due to loss of microbial catabolism of choline, and increased creatine and creatinine due to loss of microbial enzyme degradation. Eight metabolites changed in fecal extracts of mice treated with enrofloxacin including depletion of amino acids produced by microbial proteases, reduction in metabolites generated by lactate‐utilizing bacteria, and increased urea caused by loss of microbial ureases. Copyright


Proteins | 2006

NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c‐di‐GMP binding protein

Theresa A. Ramelot; Adelinda Yee; John R. Cort; Anthony Semesi; C.H. Arrowsmith; Michael A. Kennedy

PA4608 is a 125 residue protein from Pseudomonas aeruginosa with a recent identification as a PilZ domain and putative bis‐(3′‐5′)‐cyclic dimeric guanosine monophosphate (c‐di‐GMP) adaptor protein that plays a role in bacterial second‐messenger regulated processes. The nuclear magnetic resonance (NMR) structure of PA4608 has been determined and c‐di‐GMP binding has been confirmed by NMR titration studies. The monomeric core structure of PA4608 contains a six‐stranded anti‐parallel β barrel flanked by three helices. Conserved surface residues among PA4608 homologs suggest the c‐di‐GMP binding site is at one end of the barrel and includes residues in the helices as well as in the unstructured N‐terminus. Chemical shift changes in PA4608 resonances upon titration with c‐di‐GMP confirm binding. This evidence supports the hypothesis that proteins containing PilZ domains are the long‐sought c‐di‐GMP adaptor proteins. Proteins 2007.


Molecular Cell | 2014

Structural Asymmetry in the Closed State of Mitochondrial Hsp90 (TRAP1) Supports a Two-Step ATP Hydrolysis Mechanism

Laura A. Lavery; James R. Partridge; Theresa A. Ramelot; Daniel Elnatan; Michael A. Kennedy; David A. Agard

While structural symmetry is a prevailing feature of homo-oligomeric proteins, asymmetry provides unique mechanistic opportunities. We present the crystal structure of full-length TRAP1, the mitochondrial Hsp90 molecular chaperone, in a catalytically active closed state. The TRAP1 homodimer adopts a distinct, asymmetric conformation, where one protomer is reconfigured via a helix swap at the middle:C-terminal domain (MD:CTD) interface. This interface plays a critical role in client binding. Solution methods validate the asymmetry and show extension to Hsp90 homologs. Point mutations that disrupt unique contacts at each MD:CTD interface reduce catalytic activity and substrate binding and demonstrate that each protomer needs access to both conformations. Crystallographic data on a dimeric NTD:MD fragment suggests that asymmetry arises from strain induced by simultaneous NTD and CTD dimerization. The observed asymmetry provides the potential for an additional step in the ATPase cycle, allowing sequential ATP hydrolysis steps to drive both client remodeling and client release.


Proteins | 2009

Improving NMR Protein Structure Quality by Rosetta Refinement: A Molecular Replacement Study

Theresa A. Ramelot; Srivatsan Raman; Alexandre P. Kuzin; Rong Xiao; Li Chung Ma; Thomas B. Acton; John F. Hunt; Gaetano T. Montelione; David Baker; Michael A. Kennedy

The structure of human protein HSPC034 has been determined by both solution nuclear magnetic resonance (NMR) spectroscopy and X‐ray crystallography. Refinement of the NMR structure ensemble, using a Rosetta protocol in the absence of NMR restraints, resulted in significant improvements not only in structure quality, but also in molecular replacement (MR) performance with the raw X‐ray diffraction data using MOLREP and Phaser. This method has recently been shown to be generally applicable with improved MR performance demonstrated for eight NMR structures refined using Rosetta (Qian et al., Nature 2007;450:259–264). Additionally, NMR structures of HSPC034 calculated by standard methods that include NMR restraints have improvements in the RMSD to the crystal structure and MR performance in the order DYANA, CYANA, XPLOR‐NIH, and CNS with explicit water refinement (CNSw). Further Rosetta refinement of the CNSw structures, perhaps due to more thorough conformational sampling and/or a superior force field, was capable of finding alternative low energy protein conformations that were equally consistent with the NMR data according to the Recall, Precision, and F‐measure (RPF) scores. On further examination, the additional MR‐performance shortfall for NMR refined structures as compared with the X‐ray structure were attributed, in part, to crystal‐packing effects, real structural differences, and inferior hydrogen bonding in the NMR structures. A good correlation between a decrease in the number of buried unsatisfied hydrogen‐bond donors and improved MR performance demonstrates the importance of hydrogen‐bond terms in the force field for improving NMR structures. The superior hydrogen‐bond network in Rosetta‐refined structures demonstrates that correct identification of hydrogen bonds should be a critical goal of NMR structure refinement. Inclusion of nonbivalent hydrogen bonds identified from Rosetta structures as additional restraints in the structure calculation results in NMR structures with improved MR performance. Proteins 2009.


Analytical Biochemistry | 2010

Statistical significance analysis of nuclear magnetic resonance-based metabonomics data.

Aaron M. Goodpaster; Lindsey E. Romick-Rosendale; Michael A. Kennedy

Use of nuclear magnetic resonance (NMR)-based metabonomics to search for human disease biomarkers is becoming increasingly common. For many researchers, the ultimate goal is translation from biomarker discovery to clinical application. Studies typically involve investigators from diverse educational and training backgrounds, including physicians, academic researchers, and clinical staff. In evaluating potential biomarkers, clinicians routinely use statistical significance testing language, whereas academicians typically use multivariate statistical analysis techniques that do not perform statistical significance evaluation. In this article, we outline an approach to integrate statistical significance testing with conventional principal components analysis data representation. A decision tree algorithm is introduced to select and apply appropriate statistical tests to loadings plot data, which are then heat map color-coded according to P score, enabling direct visual assessment of statistical significance. A multiple comparisons correction must be applied to determine P scores from which reliable inferences can be made. Knowledge of means and standard deviations of statistically significant buckets enabled computation of effect sizes and study sizes for a given statistical power. Methods were demonstrated using data from a previous study. Integrated metabonomics data assessment methodology should facilitate translation of NMR-based metabonomics discovery of human disease biomarkers to clinical use.

Collaboration


Dive into the Michael A. Kennedy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Cort

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunhuang Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Garry W. Buchko

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge