Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Meyer is active.

Publication


Featured researches published by Michael A. Meyer.


Neurology International | 2013

Delayed post-hypoxic leukoencephalopathy: case report with a review of disease pathophysiology

Michael A. Meyer

Delayed post-hypoxic leukoencephalopathy is a rare clinical phenomenon usually observed in a small number of carbon monoxide poisoning survivors. A similar phenomenon is reported here in a patient who successfully recovered from a large overdose of diazepam and methadone, but then abruptly declined 3 weeks after the initial event. Magnetic resnance revealed confluent white matter hyperintensity on fluid-attenuated inversion recovery and T2 weighted sequences, and spectroscopy revealed elevated peaks in choline, creatinine, and lactate. Analysis and review of the literature suggests this phenomenon occurs on average about 19 days after the initial event. Although the pathophysiology remains obscure, it is noted here that the mean lucid interval coincides approximately with the replacement half-life for myelin related lipids and proteins.


Neurology International | 2014

Identification of 17 highly expressed genes within mouse lumbar spinal cord anterior horn region from an in-situ hybridization atlas of 3430 genes: implications for motor neuron disease

Michael A. Meyer

In an effort to find possible new gene candidates involved in the causation of amyotrophic lateral sclerosis (ALS), a prior version of the on-line brain gene expression atlas GENSAT was extensively searched for selectively intense expression within spinal motor neurons. Using autoradiographic data of in-situ hybridization from 3430 genes, a search for selectively intense activity was made for the anterior horn region of murine lumbar spinal cord sectioned in the axial plane. Of 3430 genes, a group of 17 genes was found to be highly expressed within the anterior horn suggesting localization to its primary cellular constituent, the alpha spinal motor neuron. For some genes, an inter-relationship to ALS was already known, such as for heavy, medium, and light neurofilaments, and peripherin. Other genes identified include: Gamma Synuclein, GDNF, SEMA3A, Extended Synaptotagmin-like protein 1, LYNX1, HSPA12a, Cadherin 22, PRKACA, TPPP3 as well as Choline Acetyltransferase, Janus Kinase 1, and the Motor Neuron and Pancreas Homeobox 1. Based on this study, Fibroblast Growth Factor 1 was found to have a particularly selective and intense localization pattern to the ventral horn and may be a good target for development of motor neuron disease therapies; further research is needed.


Neurology International | 2014

Highly Expressed Genes within Hippocampal Sector CA1: Implications for the Physiology of Memory.

Michael A. Meyer

As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT). From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated


Neurology International | 2014

Highly expressed genes in human high grade gliomas: immunohistochemical analysis of data from the Human Protein Atlas

Michael A. Meyer

Gene expression within human glioblastomas were analyzed from data on 20,083 genes entered into the on-line Human Protein Atlas. In selecting genes that are strongly expressed within normal human brain tissue, 58 genes were identified from a search of the 20,083 entries that were rated as showing 90% or greater intensity of expression within normal brain tissues. Of these 58, a subset of 48 genes was identified that not only had expression data for human glioblastomas but also for the human glioblastoma cell line U-251. Four of these 48 selected genes were found to be strongly expressed within the cytoplasm when assessed by both histologic sampling of high grade glioma patient cases as well as U-251 glioblastoma cell line immunofluoresence analysis. These four human genes are: AGBL2 (ATP/GTP binding protein-like 2), BLOC1S6 (biogenesis of lysosomal organelles complex-1, subunit 6), MAP1A (microtubule-associated protein 1A) and ZSWIM5 (zinc finger, SWIM-type containing 5, also known as KIAA1511). Further research is advocated to investigate the role of ZSWIM5 and AGBL2 in glioma cell biology.


Neurology International | 2014

Myoclonic jerks secondary to piperacillin and nafcillin

Michael A. Meyer

A 66-year-old male receiving intravenous piperacillin and nafcillin for a post-surgical wound infection developed intermittent myoclonic jerks of all four extremities that disappeared after discontinuation of these two medications. In addition there was a mild yet definite intermittent encephalopathic effect; head computed tomography examination as negative and there was no prior history for seizure or myoclonus. These two beta lactam ring antibiotics are structurally similar to penicillin, which is well known to induce not only myoclonus but also seizure activity by reducing the gamma-aminobutyric acid (GABA) induced inhibitory currents by inducing an open chloride channel block of the GABA type A receptors within the brain. Clinicians need to be fully aware of the potential epileptogenic effects of piperacillin, nafcillin, and related antibiotics.


Neurology International | 2013

Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

Michael A. Meyer

The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4) to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3). For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.


Neurology International | 2018

PET imaging of 18F-florbetapir in cognitively impaired individuals: Lack of activity within the cerebellar cortex

Michael A. Meyer; Allison Caccia; Danielle Martinez; Mark A. Mingos

Ten individuals suspected of having possible Alzheimer disease underwent PET imaging using 18F-Flubetapir. Only one of ten individuals had a pattern typical for normal elderly control subjects with 9 of the 10 showing a Alzheimer type pattern for the cerebral cortex yet all 10 subjects had uniformly low to absent tracer localization to the cerebellar cortex; significantly high tracer activity was noted within the subcortical white matter of the cerebellum in a symmetric manner in all cases. In consideration of studies that have shown amyloid deposits within the cerebellar cortex in 90% of pathologically proven cases of Alzheimer’s disease, these findings raise questions about the actual clinical value of florbetapir PET imaging in evaluating cerebellar involvement and raises questions whether PET imaging of this tracer accurately portrays patterns of amyloid deposition, as there is rapid hepatic metabolism of the parent compound after intravenous injection. Possible links to Alzheimer’s disease related alterations in blood-brain barrier permeability to the parent compound and subsequent radiolabelled metabolites are discussed as potential mechanisms that could explain the associated localization of the tracer to the brainstem and subcortical white matter within the cerebrum and cerebellum of Alzheimer’s disease patients.


Neurology International | 2018

Posterior cortical atrophy: A rare variant of Alzheimer’s disease

Michael A. Meyer; Stephen A. Hudock

Posterior cortical atrophy is a rare condition first described in 1988 involving progressive degeneration and atrophy of the occipital cortex, often recognized after an unexplained homonymous hemianopsia may be discovered. We report a case in association with Alzheimer’s disease in a 77-year-old female, who underwent brain single-photon emission computed tomography as well brain positron emission tomography using Florbetapir to further evaluate progressive cognitive decline. The patient had also been followed in Ophthalmology for glaucoma, where a progressive unexplained change in her visual field maps were noted over one year consistent with a progressive right homonymous hemianopsia. This rare combination of findings in association with her dementia led to a detailed review of all her imaging studies, concluding with the surprising recognition for a clear hemi-atrophy of the primary left occipital cortex was occurring, consistent with Alzheimer’s disease affecting the primary visual cortex. Further awareness of this disease pattern is needed, as Alzheimer’s disease typically does not affect the primary visual cortex; other conditions to consider in general include Lewy Body dementia, cortico-basal degeneration and prion disease.


Neurology International | 2018

Glioma research: Early detection of a downward trend in publication productivity?

Michael A. Meyer

Global publication productivity for brain tumors was examined on a annual basis and compared to other neurologic disorders including stroke, epilepsy and Alzheimer’s disease. An early downward trend is suggested for 2016; possible links to fluctuations in funding is discussed.


Neurology International | 2014

Focal Electroencephalography Rhythm Asymmetry due to Focal Skull Fibrous Dysplasia.

Michael A. Meyer

An unusual pervasive and persistent asymmetry in background rhythm was found on surface electroencephalography (EEG) recordings in a 22 year old with new onset of generalized seizure activity. Radiographic correlation with computed tomography, positron emission tomography and bone scan imaging uncovered that the higher amplitude left frontal-parietal background activity was related to a circumscribed area of left frontal-parietal fibrous dysplasia affecting the skull. This case report emphasizes that the presumed higher electrical conductance of fibrous dysplasia lead to a greater transparency of normal background rhythms, and must be taken into account as a form of breach rhythm for accurate EEG interpretation

Collaboration


Dive into the Michael A. Meyer's collaboration.

Top Co-Authors

Avatar

Hussam Ammar

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge