Michael A. Reid
City of Hope National Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael A. Reid.
Journal of Translational Medicine | 2009
Zhaohui Zhong; Amit N. Patel; Thomas E. Ichim; Neil H. Riordan; Hao Wang; Wei Ping Min; Erik J Woods; Michael A. Reid; Eduardo Mansilla; Gustavo Horacio Marín; Hugo Drago; Michael P. Murphy; Boris Minev
Endometrial Regenerative Cells (ERC) are a population of mesenchymal-like stem cells having pluripotent differentiation activity and ability to induce neoangiogenesis. In vitro and animal studies suggest ERC are immune privileged and in certain situations actively suppress ongoing immune responses. In this paper we describe the production of clinical grade ERC and initial safety experiences in 4 patients with multiple sclerosis treated intravenously and intrathecally. The case with the longest follow up, of more than one year, revealed no immunological reactions or treatment associated adverse effects. These preliminary data suggest feasibility of clinical ERC administration and support further studies with this novel stem cell type.
Molecular Cell | 2013
Michael A. Reid; Wen-I Wang; Kimberly Romero Rosales; M.X. Welliver; Min Pan; Mei Kong
Glutamine is an essential nutrient for cancer cell survival and proliferation, yet the signaling pathways that sense glutamine levels remain uncharacterized. Here, we report that the protein phosphatase 2A (PP2A)-associated protein, α4, plays a conserved role in glutamine sensing. α4 promotes assembly of an adaptive PP2A complex containing the B55α regulatory subunit via providing the catalytic subunit upon glutamine deprivation. Moreover, B55α is specifically induced upon glutamine deprivation in a ROS-dependent manner to activate p53 and promote cell survival. B55α activates p53 through direct interaction and dephosphorylation of EDD, a negative regulator of p53. Importantly, the B55α-EDD-p53 pathway is essential for cancer cell survival and tumor growth under low glutamine conditions in vitro and in vivo. This study delineates a previously unidentified signaling pathway that senses glutamine levels as well as provides important evidence that protein phosphatase complexes are actively involved in signal transduction.
Nature Cell Biology | 2016
Min Pan; Michael A. Reid; Xazmin H. Lowman; Rajan P. Kulkarni; Thai Q. Tran; Xiaojing Liu; Ying Yang; Jenny E. Hernandez-Davies; Kimberly K. Rosales; Haiqing Li; Willy Hugo; Chunying Song; Xiangdong Xu; Dustin Schones; David K. Ann; Viviana Gradinaru; Roger S. Lo; Jason W. Locasale; Mei Kong
Poorly organized tumour vasculature often results in areas of limited nutrient supply and hypoxia. Despite our understanding of solid tumour responses to hypoxia, how nutrient deprivation regionally affects tumour growth and therapeutic response is poorly understood. Here, we show that the core region of solid tumours displayed glutamine deficiency compared with other amino acids. Low glutamine in tumour core regions led to dramatic histone hypermethylation due to decreased α-ketoglutarate levels, a key cofactor for the Jumonji-domain-containing histone demethylases. Using patient-derived V600EBRAF melanoma cells, we found that low-glutamine-induced histone hypermethylation resulted in cancer cell dedifferentiation and resistance to BRAF inhibitor treatment, which was largely mediated by methylation on H3K27, as knockdown of the H3K27-specific demethylase KDM6B and the methyltransferase EZH2 respectively reproduced and attenuated the low-glutamine effects in vitro and in vivo. Thus, intratumoral regional variation in the nutritional microenvironment contributes to tumour heterogeneity and therapeutic response.
Nature Cell Biology | 2017
Michael A. Reid; Ziwei Dai; Jason W. Locasale
The substrates used to modify nucleic acids and chromatin are affected by nutrient availability and the activity of metabolic pathways. Thus, cellular metabolism constitutes a fundamental component of chromatin status and thereby of genome regulation. Here we describe the biochemical and genetic principles of how metabolism can influence chromatin biology and epigenetics, discuss the functional roles of this interplay in developmental and cancer biology, and present future directions in this rapidly emerging area.
Molecular Aspects of Medicine | 2017
Xia Gao; Michael A. Reid; Mei Kong; Jason W. Locasale
Cancer cells have epigenetic alterations that are known to drive cancer progression. The reversibility of the epigenetic posttranslational modifications on chromatin and DNA renders targeting these modifications an attractive means for cancer therapy. Cellular epigenetic status interacts with cell metabolism, and we are now beginning to understand the nature of how this interaction occurs and the biological contexts that mediate its function. Given the tremendous interest in understanding and targeting metabolic reprogramming in cancer, this nexus also provides opportunities for exploring the liabilities of cancers. This review summarizes recent developments in our understanding of the interaction of cancer metabolism and epigenetics.
Genes & Development | 2016
Michael A. Reid; Xazmin H. Lowman; Min Pan; Thai Q. Tran; Marc O. Warmoes; Mari B. Ishak Gabra; Ying Yang; Jason W. Locasale; Mei Kong
Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability.
Oncogene | 2017
Thai Q. Tran; Xazmin H. Lowman; Michael A. Reid; C Mendez-Dorantes; Min Pan; Ying Yang; Mei Kong
Cancer cells depend on glutamine to sustain their increased proliferation and manage oxidative stress, yet glutamine is often depleted at tumor sites owing to excessive cellular consumption and poor vascularization. We have previously reported that p53 protein, although a well-known tumor suppressor, can contribute to cancer cell survival and adaptation to low-glutamine conditions. However, the TP53 gene is frequently mutated in tumors, and the role of mutant p53 (mutp53) in response to metabolic stress remains unclear. Here, we demonstrate that tumor-associated mutp53 promotes cancer cell survival upon glutamine deprivation both in vitro and in vivo. Interestingly, cancer cells expressing mutp53 proteins are more resistant to glutamine deprivation than cells with wild-type p53. Depletion of endogenous mutp53 protein in human lymphoma cells leads to cell sensitivity to glutamine withdrawal, whereas expression of mutp53 in p53 null cells results in resistance to glutamine deprivation. Furthermore, we found that mutp53 proteins hyper-transactivate p53-target gene CDKN1A upon glutamine deprivation, thus triggering cell cycle arrest and promoting cell survival. Together, our results reveal an unidentified mechanism by which mutp53 confers oncogenic functions by promoting cancer cell adaptation to metabolic stress.
PLOS ONE | 2015
Kimberly Romero Rosales; Michael A. Reid; Ying Yang; Thai Q. Tran; Wen-I Wang; Xazmin H. Lowman; Min Pan; Mei Kong
Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response.
Journal of Carcinogenesis | 2013
Michael A. Reid; Mei Kong
Increased nutrient uptake and usage is a hallmark of many human malignancies. During the course of tumorigenesis, cancer cells often outstrip their local nutrient supply leading to periods of nutrient deprivation. Interestingly, cancer cells often develop strategies to adapt and survive these challenging conditions. Accordingly, understanding these processes is critical for developing therapies that target cancer metabolism. Exciting new progress has been made in elucidating the mechanisms used by cancer cells under nutrient restricted conditions. In this review, we highlight recent studies that have brought insight into how cancer cells deal with low nutrient environments.
Cell Reports | 2018
Xia Gao; Katie Lee; Michael A. Reid; Sydney M. Sanderson; Chuping Qiu; Siqi Li; Juan Liu; Jason W. Locasale
SUMMARY Cell proliferation can be dependent on the non-essential amino acid serine, and dietary restriction of serine inhibits tumor growth, but the underlying mechanisms remain incompletely understood. Using a metabolomics approach, we found that serine deprivation most predominantly impacts cellular acylcarnitine levels, a signature of altered mitochondrial function. Fuel utilization from fatty acid, glucose, and glutamine is affected by serine deprivation, as are mitochondrial morphological dynamics leading to increased fragmentation. Interestingly, these changes can occur independently of nucleotide and redox metabolism, two known major functions of serine. A lipidomics analysis revealed an overall decrease in ceramide levels. Importantly, supplementation of the lipid component of bovine serum or C16:0-ceramide could partially restore defects in cell proliferation and mitochondrial fragmentation induced by serine deprivation. Together, these data define a role for serine in supporting mitochondrial function and cell proliferation through ceramide metabolism.