Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Samaan is active.

Publication


Featured researches published by Michael A. Samaan.


Journal of Biomechanics | 2012

Influence of kinematic analysis methods on detecting ankle and subtalar joint instability.

Julie Choisne; Stacie I. Ringleb; Michael A. Samaan; Sebastian Y. Bawab; Dayanand N. Naik; Claude D. Anderson

Patients with subtalar joint instability may be misdiagnosed with ankle instability, which may lead to chronic instability at the subtalar joint. Therefore, it is important to understand the difference in kinematics after ligament sectioning and differentiate the changes in kinematics between ankle and subtalar instability. Three methods may be used to determine the joint kinematics; the Euler angles, the Joint Coordinate System (JCS) and the helical axis (HA). The purpose of this study was to investigate the influence of using either method to detect subtalar and ankle joints instability. 3D kinematics at the ankle and subtalar joint were analyzed on 8 cadaveric specimens while the foot was intact and after sequentially sectioning the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), the cervical ligament and the interosseous talocalcaneal ligament (ITCL). Comparison in kinematics calculated from sensor and anatomical landmarks was conducted as well as the influence of Euler angles and JCS rotation sequence (between ISB recommendation and previous research) on the subtalar joint. All data showed a significant increase in inversion when the ITCL was sectioned. There were differences in the data calculated using sensors coordinate systems vs. anatomic coordinate systems. Anatomic coordinate systems were recommended for these calculations. The Euler angle and JCS gave similar results. Differences in Euler angles and JCS sequence lead to the same conclusion in detecting instability at the ankle and subtalar joint. As expected, the HA detected instability in plantarflexion at the ankle joint and in inversion at the subtalar joint.


Seminars in Arthritis and Rheumatism | 2016

Longitudinal assessment of MRI in hip osteoarthritis using SHOMRI and correlation with clinical progression

Benedikt J. Schwaiger; Alexandra S. Gersing; Sonia Lee; Lorenzo Nardo; Michael A. Samaan; Richard B. Souza; Thomas M. Link; Sharmila Majumdar

PURPOSE To assess the evolution of MR imaging findings in normal volunteers and subjects with hip osteoarthritis (OA) over 1.5 years described by the semi-quantitative Scoring Hip OA with MRI (SHOMRI) scoring system and their correlation with the evolution of clinical parameters. MATERIALS AND METHODS Hip MRI studies of 18 subjects with [Kellgren-Lawrence (KL) score = 2/3; mean age = 54.4 ± 11.2 years; 27.8% women] and 36 controls without radiographic OA [KL = 0/1; mean age = 43.7 ± 12.8 years; 50.0% women] were assessed at baseline and after 1.5 years by using SHOMRI, and their clinical status was evaluated by using Harris Hip Score and Hip Disability and Osteoarthritis Outcome Score (HOOS). Imaging and clinical parameters at baseline and their change over time were compared between groups using Mann-Whitney U and Fisher׳s exact tests. Spearman׳s rank correlations and generalized linear models adjusted for age, sex, BMI, and KL were used to assess associations between imaging and clinical findings. RESULTS At baseline, OA subjects had significantly higher SHOMRI total scores than controls [median (IQR): 12.5 (6-19.5) vs. 7 (4-13.5); p = 0.024]. Over 1.5 years, only the progression rate of subchondral cysts was significantly higher in OA subjects than in controls (16.7% vs. 0.0%; p = 0.033), while no significant differences were found for any of the other SHOMRI subscales. Baseline bone-marrow edema pattern (BMEP) was significantly associated with worsening pain (HOOS subscale; p = 0.018) and hip-related quality of life (HOOS subscale; p = 0.044). Progression of subchondral cysts was significantly associated with worsening symptoms other than pain (HOOS subscale, p = 0.030). Baseline KL did not significantly correlate with worsening of any clinical symptoms (each, p > 0.05). CONCLUSION In this relatively young study population without or with mild to moderate radiographic hip OA, only minimal differences were found between groups regarding the progression of hip abnormalities as assessed by SHOMRI over 1.5 years. However, BMEP predicted clinical worsening and subchondral cyst progression was associated with worsening symptoms. Although longer follow-up periods are required, this suggests that SHOMRI is a useful tool to monitor hip abnormalities and their progression longitudinally.


American Journal of Sports Medicine | 2017

Joint Loading in the Sagittal Plane During Gait Is Associated With Hip Joint Abnormalities in Patients With Femoroacetabular Impingement

Michael A. Samaan; Benedikt J. Schwaiger; Matthew C. Gallo; Kiyoshi Sada; Thomas M. Link; Alan L. Zhang; Sharmila Majumdar; Richard B. Souza

Background: Femoroacetabular impingement (FAI) is a morphological abnormality of the hip joint that results in functional impairments during various activities of daily living (ADL) such as walking. Purpose/Hypothesis: The purpose of this study was to determine if lower extremity joint loading differed between patients with FAI and controls and to determine whether these altered biomechanical parameters were associated with intra-articular abnormalities. It was hypothesized that patients with FAI would exhibit altered lower extremity joint loading during walking when compared with healthy controls and that these altered joint loading patterns would be associated with intra-articular abnormalities. Study Design: Controlled laboratory study. Methods: Lower extremity kinetics was assessed during walking at a self-selected speed in 15 presurgical patients with FAI and 34 healthy controls matched for age and body mass index. All participants underwent unilateral hip magnetic resonance imaging (MRI) to assess hip joint abnormalities. Hip joint abnormalities were assessed using a semiquantitative MRI-based scoring system. Self-reported outcomes of pain and function were obtained using the Hip disability and Osteoarthritis Outcome Score (HOOS), and physical performance was measured using the 6-minute walk test (6MWT). Group differences were assessed using an independent t test and analysis of variance. In the patients with FAI, associations of joint kinetics with HOOS subscores and intra-articular abnormalities were assessed using the Pearson (r) and Spearman (ρ) correlation coefficients, respectively. Results: Compared with the control group, the FAI group exhibited a significantly increased severity of acetabular (FAI: 1.87 ± 1.55; control: 0.47 ± 0.79; P < .001) and femoral (FAI: 3.27 ± 2.79; control: 1.21 ± 1.55; P = .002) cartilage abnormalities, increased levels of pain (FAI: 65.0 ± 18.8; control: 98.2 ± 3.4; P = .001), and reduced function (FAI: 67.2 ± 21.5; control: 98.9 ± 3.4; P < .001) but similar walking speeds (FAI: 1.55 ± 0.19 m/s; control: 1.63 ± 0.22 m/s; P = .20) and 6MWT performance (FAI: 628.0 ± 91.2 m; control: 667.2 ± 73.4 m; P = .13). The FAI group demonstrated increased hip flexion moment impulses (FAI: 0.14 ± 0.04 N·m·s/kg; control: 0.11 ± 0.03 N·m·s/kg; P = .03), peak ankle dorsiflexion moments (FAI: 1.64 ± 0.16 N·m/kg; control: 1.46 ± 0.31 N·m/kg; P = .04), and ankle dorsiflexion moment impulses (FAI: 0.39 ± 0.07 N·m·s/kg; control: 0.31 ± 0.07 N·m·s/kg; P = .01) compared with the control group. Within the FAI group, an increased hip flexion moment impulse during walking was significantly correlated with increased pain (r = −0.60, P = .03), decreased ADL (r = −0.57, P = .04), and increased severity of acetabular cartilage abnormalities (ρ = 0.82, P < .01). Conclusion: Patients with FAI exhibited altered hip and ankle joint loading patterns during walking. These data suggest that patients with FAI demonstrate both local and distal joint alterations during walking and that hip joint loading is directly related to hip joint abnormalities. Clinical Relevance: The results of this study suggest that the hip flexion moment impulse may be an important biomechanical parameter to understand FAI, as the hip flexion moment impulse during walking was shown to be directly related to hip joint abnormalities on MRI.


Clinical Biomechanics | 2015

Acetabular cartilage defects cause altered hip and knee joint coordination variability during gait.

Michael A. Samaan; Hsiang-Ling Teng; Deepak Kumar; Sonia Lee; Thomas M. Link; Sharmila Majumdar; Richard B. Souza

BACKGROUND Patients with acetabular cartilage defects reported increased pain and disability compared to those without acetabular cartilage defects. The specific effects of acetabular cartilage defects on lower extremity coordination patterns are unclear. The purpose of this study was to determine hip and knee joint coordination variability during gait in those with and without acetabular cartilage defects. METHODS A combined approach, consisting of a semi-quantitative MRI-based quantification method and vector coding, was used to assess hip and knee joint coordination variability during gait in those with and without acetabular cartilage lesions. FINDINGS The coordination variability of the hip flexion-extension/knee rotation, hip abduction-adduction/knee rotation, and hip rotation/knee rotation joint couplings were reduced in the acetabular lesion group compared to the control group during loading response of the gait cycle. The lesion group demonstrated increased variability in the hip flexion-extension/knee rotation and hip abduction-adduction/knee rotation joint couplings, compared to the control group, during the terminal stance/pre-swing phase of gait. INTERPRETATION Reduced variability during loading response in the lesion group may suggest reduced movement strategies and a possible compensation mechanism for lower extremity instability during this phase of the gait cycle. During terminal stance/pre-swing, a larger variability in the lesion group may suggest increased movement strategies and represent a compensation or pain avoidance mechanism caused by the load applied to the hip joint.


Pm&r | 2017

Abnormal Joint Moment Distributions and Functional Performance During Sit-to-Stand in Femoroacetabular Impingement Patients.

Michael A. Samaan; Benedikt J. Schwaiger; Matthew C. Gallo; Thomas M. Link; Alan L. Zhang; Sharmila Majumdar; Richard B. Souza

Femoroacetabular impingement (FAI) is a morphological abnormality of the hip joint that causes pain when performing a mechanically demanding activity of daily living such as the sit‐to‐stand (STS) task. Previous studies have assessed lower extremity joint mechanics during an STS task in various pathologies, yet the STS task has not been studied in FAI patients.


Knee | 2016

Anterior cruciate ligament (ACL) loading in a collegiate athlete during sidestep cutting after ACL reconstruction: A case study

Michael A. Samaan; Stacie I. Ringleb; Sebastian Y. Bawab; Eric Greska; Joshua T. Weinhandl

BACKGROUND Athletes with anterior cruciate ligament (ACL) injuries usually undergo ACL-reconstruction (ACLR) in order to restore joint stability, so that dynamic maneuvers such as the sidestep cut can be performed. Despite restoration of joint stability after ACLR, many athletes do not return to pre-injury levels and may be at a high risk of a second ACL injury. The purpose of this study was to determine whether or not ACL loading, would increase after ACLR. METHODS One female Division I collegiate athlete performed bilateral unanticipated sidestep cuts both before ACL injury and 27months after ACLR. Musculoskeletal simulations were used to calculate ACL loading during the deceleration phase of the sidestep cuts. RESULTS Twenty-seven months after ACLR, the athlete demonstrated higher total ACL loading in the ipsilateral limb as well as altered joint kinematics, moments, and quadriceps muscle force production. In the contralateral limb, there were no increases in total ACL loading or muscle force production yet altered lower extremity joint kinematics and moments were present after ACLR. CONCLUSIONS Higher total ACL loading in the ipsilateral limb of this athlete may suggest an increased risk of second ACL injury. The results of this study provide an initial step in understanding the effects of ACLR on the risk of second ACL injury in an elite athlete and suggest that it is important to develop a better understanding of this surgical intervention on knee joint loading, in order to reduce the risk of second ACL injury while performing dynamic maneuvers.


Journal of Magnetic Resonance Imaging | 2016

Quantitative magnetic resonance arthrography in patients with femoroacetabular impingement

Michael A. Samaan; Alan L. Zhang; Matthew C. Gallo; Benedikt J. Schwaiger; Thomas M. Link; Richard B. Souza; Sharmila Majumdar

Quantitative MRI (QMRI) of the hip with sequences such as T1ρ and T2 mapping has been utilized to detect early changes in cartilage matrix composition. However, QMRI has not been performed in the presence of intra‐articular contrast. Thus the purpose of this study was to evaluate the feasibility and use of QMRI during MR‐arthrography (MRA) in femoracetabular impingement (FAI) patients.


Journal of Biomechanical Engineering-transactions of The Asme | 2015

Predictive Neuromuscular Fatigue of the Lower Extremity Utilizing Computer Modeling

Michael A. Samaan; Joshua T. Weinhandl; Steven A. Hans; Sebastian Y. Bawab; Stacie I. Ringleb

This paper studies the modeling of lower extremity muscle forces and their correlation to neuromuscular fatigue. Two analytical fatigue models were combined with a musculoskeletal model to estimate the effects of hamstrings fatigue on lower extremity muscle forces during a side step cut. One of the fatigue models (Tang) used subject-specific knee flexor muscle fatigue and recovery data while the second model (Xia) used previously established fatigue and recovery parameters. Both fatigue models were able to predict hamstrings fatigue within 20% of the experimental data, with the semimembranosus and semitendinosus muscles demonstrating the largest (11%) and smallest (1%) differences, respectively. In addition, various hamstrings fatigue levels (10-90%) on lower extremity muscle force production were assessed using one of the analytical fatigue models. As hamstrings fatigue levels increased, the quadriceps muscle forces decreased by 21% (p < 0.01), while gastrocnemius muscle forces increased by 36% (p < 0.01). The results of this study validate the use of two analytical fatigue models in determining the effects of neuromuscular fatigue during a side step cut, and therefore, this model can be used to assess fatigue effects on risk of lower extremity injury during athletic maneuvers. Understanding the effects of fatigue on muscle force production may provide insight on muscle group compensations that may lead to altered lower extremity motion patterns as seen in noncontact anterior cruciate ligament (ACL) injuries.


Journal of Orthopaedic Research | 2017

A novel mr‐based method for detection of cartilage delamination in femoroacetabular impingement patients

Michael A. Samaan; Alan L. Zhang; Matthew C. Gallo; Thomas M. Link; Richard B. Souza; Sharmila Majumdar

In this study, quantitative magnetic resonance based measurements were used to evaluate T1ρ and T2 mapping and heterogeneity in femoroacetabular impingement (FAI) patients with acetabular cartilage delamination and to determine the ability of these quantitative MR‐based measurements in detecting delamination. Unilateral hip joint MR‐scans of 36 FAI patients with arthroscopically‐confirmed acetabular cartilage delamination and 36 age, gender, and BMI matched controls were obtained. T1ρ and T2 mapping and heterogeneity of the hip joint articular cartilage were assessed in both groups using voxel‐based relaxometry (VBR). Quantitative MR‐based measurements were compared using statistical parametric mapping (SPM). Receiver operating characteristic (ROC) analysis was used to assess the ability of these quantitative measurements in detecting delamination by calculating the area under the curve (AUC). Pearson partial correlations (r) were used to assess for associations between T1ρ and T2 radial heterogeneity with the alpha angle in FAI patients. T1ρ and T2 global acetabular values were significantly higher in FAI patients with a focal increase within the posterior acetabular cartilage. FAI patients exhibited increased anterior superior acetabular T1ρ and T2 heterogeneity and both of these measures demonstrated a strong ability to detect acetabular cartilage delamination (T1ρ AUC: 0.96, p < 0.001; T2 AUC: 0.93, p < 0.001). FAI patients with a larger alpha angle exhibited increased anterior superior acetabular T1ρ (r = 0.48, p = 0.02) and T2 (r = 0.42, p = 0.03) heterogeneity. T1ρ and T2 heterogeneity within the anterior superior acetabular cartilage was shown to be a sensitive measure in detecting delamination and may prove beneficial to clinicians in determining optimal interventions for FAI patients.


Journal of Orthopaedic Research | 2017

Study of the interactions between proximal femur 3d bone shape, cartilage health, and biomechanics in patients with hip Osteoarthritis

Michael A. Samaan; Gaurav Inamdar; Matthew C. Gallo; Richard B. Souza; Sharmila Majumdar

In this study quantitative MRI and gait analysis were used to investigate the relationships between proximal femur 3D bone shape, cartilage morphology, cartilage biochemical composition, and joint biomechanics in subject with hip Osteoarthritis (OA). Eighty subjects underwent unilateral hip MR‐imaging: T1ρ and T2 relaxation times were extracted through voxel based relaxometry and bone shape was assessed with 3D MRI‐based statistical shape modeling. In addition, 3D gait analysis was performed in seventy‐six of the studied subjects. Associations between shape, cartilage lesion presence, severity, and cartilage T1ρ and T2 were analyzed with linear regression and statistical parametric mapping. An ad hoc analysis was performed to investigate biomechanics and shape associations. Our results showed that subjects with a higher neck shaft angle in the coronal plane (higher mode 1, coxa valga), thicker femoral neck and a less spherical femoral head (higher mode 5, pistol grip) exhibited more severe acetabular and femoral cartilage abnormalities, showing different interactions with demographics factors. Subjects with coxa valga also demonstrated a prolongation of T1ρ and T2. Subjects with pistol grip deformity exhibited reduced hip internal rotation angles and subjects with coxa valga exhibited higher peak hip adduction moment and moment impulse. The results of this study establish a clear relationship between 3D proximal femur shape variations and markers of hip joint degeneration—morphological, compositional, well as insight on the possible interactions with demographics and biomechanics, suggesting that 3D MRI‐based bone shape maybe a promising biomarker of early hip joint degeneration.

Collaboration


Dive into the Michael A. Samaan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Link

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan L. Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Majumdar

University of California

View shared research outputs
Top Co-Authors

Avatar

Sonia Lee

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge