Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Sawaya is active.

Publication


Featured researches published by Michael A. Sawaya.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park

Michael A. Sawaya; Steven T. Kalinowski; Anthony P. Clevenger

Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada Highway and crossing structures along it affect gene flow in grizzly (Ursus arctos) and black bears (Ursus americanus). We compared genetic data generated from wildlife crossings with data collected from greater bear populations. We detected a genetic discontinuity at the highway in grizzly bears but not in black bears. We assigned grizzly bears that used crossings to populations north and south of the highway, providing evidence of bidirectional gene flow and genetic admixture. Parentage tests showed that 47% of black bears and 27% of grizzly bears that used crossings successfully bred, including multiple males and females of both species. Differentiating between dispersal and gene flow is difficult, but we documented gene flow by showing migration, reproduction and genetic admixture. We conclude that wildlife crossings allow sufficient gene flow to prevent genetic isolation.


Ecology and Society | 2010

Piloting a Non-Invasive Genetic Sampling Method for Evaluating Population-Level Benefits of Wildlife Crossing Structures

Anthony P. Clevenger; Michael A. Sawaya

Intuitively, wildlife crossing structures should enhance the viability of wildlife populations. Previous research has demonstrated that a broad range of species will use crossing structures, however, questions remain as to whether these measures actually provide benefits to populations. To assess this, studies will need to determine the number of individuals using crossings, their sex, and their genetic relationships. Obtaining empirical data demonstrating population-level benefits for some species can be problematic and challenging at best. Molecular techniques now make it possible to identify species, individuals, their sex, and their genetic relatedness from hair samples collected through non-invasive genetic sampling (NGS). The authors describe efforts to pilot a method to assess potential population-level benefits of wildlife crossing structures. They tested the feasibility of a prototype NGS system designed to sample hair from black bears (Ursus americanus) and grizzly bears (U. arctos) at two wildlife underpasses. The piloted hair-sampling method did not deter animal use of the trial underpasses and was effective at sampling hair from more than 90% of the bear crossing events at the underpasses. Hair samples were also obtained from non-target carnivore species, including three out of five (60%) cougar (Puma concolor) crossing events. Individual identification analysis revealed that three female and two male grizzly bears used one wildlife underpass, whereas two female and three male black bears were identified as using the other underpass. Of the 36 hair samples from bears analyzed, five failed, resulting in an 87% extraction success rate, and six more were only identified to species. Overall, 70% of the hair samples from bears collected in the field had sufficient DNA for extraction purposes. Preliminary data from our NGS suggest the technique can be a reliable method to assess the population-level benefits of Banff wildlife crossings. Furthermore, NGS can be an important tool for the conservation value of wildlife crossings for other taxa, and we urge others to carry out evaluations of this emerging methodology.


PLOS ONE | 2012

Estimating Grizzly and Black Bear Population Abundance and Trend in Banff National Park Using Noninvasive Genetic Sampling

Michael A. Sawaya; Jeffrey B. Stetz; Anthony P. Clevenger; Michael L. Gibeau; Steven T. Kalinowski

We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears ( = 73.5, 95% CI = 64–94 in 2006;  = 50.4, 95% CI = 49–59 in 2008) and black bears ( = 62.6, 95% CI = 51–89 in 2006;  = 81.8, 95% CI = 72–102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males ( = 0.93, 95% CI = 0.74–1.17) and females ( = 0.90, 95% CI = 0.67–1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.


Journal of Wildlife Management | 2006

Individual Identification and Distribution of Genotypic Differences Between Individuals

Steven T. Kalinowski; Michael A. Sawaya; Mark L. Taper

Abstract


Conservation Biology | 2013

Demographic Connectivity for Ursid Populations at Wildlife Crossing Structures in Banff National Park

Michael A. Sawaya; Anthony P. Clevenger; Steven T. Kalinowski

Wildlife crossing structures are one solution to mitigating the fragmentation of wildlife populations caused by roads, but their effectiveness in providing connectivity has only been superficially evaluated. Hundreds of grizzly (Ursus arctos) and black bear (Ursus americanus) passages through under and overpasses have been recorded in Banff National Park, Alberta, Canada. However, the ability of crossing structures to allow individual and population-level movements across road networks remains unknown. In April 2006, we initiated a 3-year investigation into whether crossing structures provide demographic connectivity for grizzly and black bears in Banff National Park. We collected hair with multiple noninvasive methods to obtain genetic samples from grizzly and black bears around the Bow Valley. Our objectives were to determine the number of male and female grizzly and black bears that use crossing structures; examine spatial and temporal patterns of crossings; and estimate the proportions of grizzly and black bear populations in the Bow Valley that use crossing structures. Fifteen grizzly (7 female, 8 male) and 17 black bears (8 female, 9 male) used wildlife crossing structures. The number of individuals detected at wildlife crossing structures was highly correlated with the number of passages in space and time. Grizzly bears used open crossing structures (e.g., overpasses) more often than constricted crossings (e.g., culverts). Peak use of crossing structures for both bear species occurred in July, when high rates of foraging activity coincide with mating season. We compared the number of bears that used crossings with estimates of population abundance from a related study and determined that substantial percentages of grizzly (15.0% in 2006, 19.8% in 2008) and black bear (17.6% in 2006, 11.0% in 2008) populations used crossing structures. On the basis of our results, we concluded wildlife crossing structures provide demographic connectivity for bear populations in Banff National Park.


Journal of Wildlife Management | 2011

Evaluation of Noninvasive Genetic Sampling Methods for Cougars in Yellowstone National Park

Michael A. Sawaya; Toni K. Ruth; Scott Creel; Jay J. Rotella; Jeffrey B. Stetz; Howard B. Quigley; Steven T. Kalinowski

ABSTRACT Conventional methods for monitoring cougar, Puma concolor, populations involve capture, tagging, and radio-collaring, but these methods are time-consuming, expensive, and logistically challenging. For difficult-to-study species such as cougars, noninvasive genetic sampling (NGS) may be a useful alternative. The ability to identify individuals from samples collected through NGS methods provides many opportunities for developing population-monitoring tools, but the utility of these survey methods is dependent upon collection of samples and accurate genotyping of those samples. In January 2003, we initiated a 3-yr evaluation of NGS methods for cougars using a radio-collared population in Yellowstone National Park (YNP), USA. Our goals were to: 1) determine which DNA collection method, hair snares or snow tracking, provided a better method for obtaining samples for genetic analysis, 2) evaluate reliability of the genetic data derived from hair samples collected in the field, and 3) evaluate the potential of NGS for demographic monitoring of cougar populations. Snow tracking yielded more hair samples and was more cost effective than snagging hair with rub pads. Samples collected from bed sites and natural hair snags (e.g., branch tips, thorn bushes) while snow tracking accurately identified and sexed 22 individuals (9 F, 13 M). The ratio of the count from snow tracking to the count from radio-telemetry was 15:24 in winter 2004,13:12 in 2005, and 22:29 for both years combined. Annual capture probabilities for obtaining DNA from snow tracking varied considerably between years for females (0.42 in 2004 and 0.88 in 2005) but were more consistent for males (0.77 in 2004 and 0.88 in 2005). Our results indicate that snow tracking can be an efficient, reliable NGS method for cougars in YNP and has potential for estimating demographic and genetic parameters of other carnivore populations in similar climates.


PLOS ONE | 2015

A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models

Jesse Whittington; Michael A. Sawaya

Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions.


Journal of Fish and Wildlife Management | 2015

Effects of Exposure on Genotyping Success Rates of Hair Samples from Brown and American Black Bears

Jeff B. Stetz; Tucker Seitz; Michael A. Sawaya

Abstract Noninvasively collected hair samples have been used in numerous studies to answer questions about the demographic and genetic status and trends of wildlife populations. In particular, these methods are well-suited for researching and monitoring ursid populations, which are typically difficult to study because of their rare and cryptic nature. Recently, researchers have taken increasing advantage of natural bear behaviors to obtain hair samples for genetic analyses by conducting surveys of bear rubs (objects that bears rub against such as trees and power poles). The low quality and quantity DNA in noninvasively collected samples, however, can result in low genotyping success rates, which may be exacerbated by potentially lengthy duration of environmental exposure. We investigated the effects of environmental exposure (sunlight, moisture, and duration of exposure) on genotyping success rates of brown bear Ursus arctos and American black bear Ursus americanus hair samples. We exposed a total of 238 ...


Isotopes in Environmental and Health Studies | 2014

Stable isotopes reveal rail-associated behavior in a threatened carnivore

John B. Hopkins; Jesse Whittington; Anthony P. Clevenger; Michael A. Sawaya; Colleen Cassady St. Clair

Human–wildlife conflict is a leading cause of adult mortality for large carnivores worldwide. Train collision is the primary cause of mortality for threatened grizzly bears (Ursus arctos) in Banff National Park. We investigated the use of stable isotope analysis as a tool for identifying bears that use the railway in Banff. Rail-associated bears had higher δ15N and δ34S values than bears sampled away from the rail, but similar δ13C values. Because elevated δ15N values are indicative of higher animal protein consumption, rail-associated bears likely preyed on ungulates that foraged along the rail or scavenged on train-killed animals. The higher δ34S values in bear hair could have resulted from bears consuming sulfur pellets spilled on the rail or through the uptake of sulfur in the plants bears or animals consumed. Similar δ13C values suggest that the two types of bears had generally similar plant-based diets. Results from this study suggest that stable isotopes analysis could be used as a non-invasive, affordable, and efficient technique to identify and monitor bears that forage on the railway in Banff and potentially other transportation corridors worldwide.


Ursus | 2017

American black bear thermoregulation at natural and artificial water sources

Michael A. Sawaya; Alan B. Ramsey; Philip W. Ramsey

Abstract Water is essential for hydration in American black bears (Ursus americanus) and other species; however, its role in thermoregulation is poorly understood. In 2010, we established a network of remote cameras to monitor wildlife in the Bitterroot Valley, Montana, USA. One of our objectives was to document and describe American black bear behavior at natural and artificial water sources. We detected male and female adult, subadult, and cub of year black bears immersing in water sources to thermoregulate. Bear use was concentrated at one livestock tank, one road puddle, and one pond in areas with relatively little human disturbance. Bear use steadily increased over summer, peaking in late summer when ambient temperatures were high and fat layers were thick. Our results demonstrate that water is an important thermoregulatory resource for some bear populations, though more research is needed to understand how ursids use behavioral thermoregulation to dissipate excess body heat and avoid hyperthermia.

Collaboration


Dive into the Michael A. Sawaya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay J. Rotella

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Mark L. Taper

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Michael K. Schwartz

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Scott Creel

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge