Michael A. Silver
Helen Wills Neuroscience Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael A. Silver.
Trends in Cognitive Sciences | 2009
Michael A. Silver; Sabine Kastner
Retinotopic mapping of functional magnetic resonance (fMRI) responses evoked by visual stimuli has resulted in the identification of many areas in human visual cortex and a description of the organization of the visual field representation in each of these areas. These methods have recently been employed in conjunction with tasks that involve higher-order cognitive processes such as spatial attention, working memory, and planning and execution of saccadic eye movements. This approach has led to the discovery of multiple areas in human parietal and frontal areas, each containing a topographic map of visual space. In this review, we summarize the anatomical locations, visual field organization, and functional specialization of these new parietal and frontal topographic cortical areas. The study of higher-order topographic cortex promises to yield unprecedented insights into the neural mechanisms of cognitive processes and, in conjunction with parallel studies in non-human primates, into the evolution of cognition.
The Journal of Neuroscience | 2010
Jong H. Yoon; Richard J. Maddock; Ariel Rokem; Michael A. Silver; Michael J. Minzenberg; J. Daniel Ragland; Cameron S. Carter
The neural mechanisms underlying cognitive deficits in schizophrenia remain essentially unknown. The GABA hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We used magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an ∼10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n = 16), we found a highly significant positive correlation (r = 0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r = −0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS.
Journal of Vision | 2009
Thomas Z. Lauritzen; Mark D'Esposito; David J. Heeger; Michael A. Silver
Given the complexity of our visual environment, the ability to selectively attend to certain locations, while ignoring others, is crucial for reducing the amount of visual information to manageable levels and for optimizing behavioral performance. Sustained allocation of spatial attention causes persistent increases in functional magnetic resonance imaging (fMRI) signals in portions of early visual cortex that retinotopically represent the attended location, even in the absence of a visual stimulus. Here we test the hypothesis that topographically organized posterior parietal cortical areas IPS1 and IPS2 transmit top-down spatial attention signals to early visual cortex. We employed fMRI and coherency analysis to measure functional connectivity among cortical areas V1, V2, V3, V3A, V3B, V7, IPS1, and IPS2 during sustained visual spatial attention. Attention increased the magnitude of coherency for many pairs of areas in occipital and parietal cortex. Additionally, attention-related activity in IPS1 and IPS2 led activity in several visual cortical areas by a few hundred milliseconds. These results are consistent with transmission of top-down spatial attention signals from IPS1 and IPS2 to early visual cortex.
Cerebral Cortex | 2014
J. Benjamin Hutchinson; Melina R. Uncapher; Kevin S. Weiner; David W. Bressler; Michael A. Silver; Alison R. Preston; Anthony D. Wagner
While attention is critical for event memory, debate has arisen regarding the extent to which posterior parietal cortex (PPC) activation during episodic retrieval reflects engagement of PPC-mediated mechanisms of attention. Here, we directly examined the relationship between attention and memory, within and across subjects, using functional magnetic resonance imaging attention-mapping and episodic retrieval paradigms. During retrieval, 4 functionally dissociable PPC regions were identified. Specifically, 2 PPC regions positively tracked retrieval outcomes: lateral intraparietal sulcus (latIPS) indexed graded item memory strength, whereas angular gyrus (AnG) tracked recollection. By contrast, 2 other PPC regions demonstrated nonmonotonic relationships with retrieval: superior parietal lobule (SPL) tracked retrieval reaction time, consistent with a graded engagement of top-down attention, whereas temporoparietal junction displayed a complex pattern of below-baseline retrieval activity, perhaps reflecting disengagement of bottom-up attention. Analyses of retrieval effects in PPC topographic spatial attention maps (IPS0-IPS5; SPL1) revealed that IPS5 and SPL1 exhibited a nonmonotonic relationship with retrieval outcomes resembling that in the SPL region, further suggesting that SPL activation during retrieval reflects top-down attention. While demands on PPC attention mechanisms vary during retrieval attempts, the present functional parcellation of PPC indicates that 2 additional mechanisms (mediated by latIPS and AnG) positively track retrieval outcomes.
Neuron | 2008
Michael A. Silver; Amitai Shenhav; Mark D'Esposito
Animal studies have shown that acetylcholine decreases excitatory receptive field size and spread of excitation in early visual cortex. These effects are thought to be due to facilitation of thalamocortical synaptic transmission and/or suppression of intracortical connections. We have used functional magnetic resonance imaging (fMRI) to measure the spatial spread of responses to visual stimulation in human early visual cortex. The cholinesterase inhibitor donepezil was administered to normal healthy human subjects to increase synaptic levels of acetylcholine in the brain. Cholinergic enhancement with donepezil decreased the spatial spread of excitatory fMRI responses in visual cortex, consistent with a role of acetylcholine in reducing excitatory receptive field size of cortical neurons. Donepezil also reduced response amplitude in visual cortex, but the cholinergic effects on spatial spread were not a direct result of reduced amplitude. These findings demonstrate that acetylcholine regulates spatial integration in human visual cortex.
Schizophrenia Bulletin | 2009
Jong H. Yoon; Ariel Rokem; Michael A. Silver; Michael J. Minzenberg; Stefan Ursu; J. Daniel Ragland; Cameron S. Carter
Visual perception of a stimulus is a function of the visual context in which it is displayed. Surround suppression is a specific form of contextual modulation whereby the perceived contrast of a center stimulus is decreased by a high-contrast surround. Recent studies have demonstrated that individuals with schizophrenia are less prone to visual contextual effects, suggesting impairments in cortical lateral connectivity. We tested whether altered contextual modulation in schizophrenia is stimulus orientation selective. Participants viewed an annulus consisting of contrast-reversing sinusoidal gratings and determined if any one segment of the annulus had lower contrast relative to the other segments. Three stimulus configurations were tested: no surround (NS), parallel surround (PS), and orthogonal surround (OS). In the PS condition, the annulus was embedded in a 100% contrast grating parallel to the annulus gratings. In the OS condition, the surround grating was rotated 90 degrees relative to the orientation of the annulus gratings. The main dependent measure was the suppression index-the change in contrast threshold in the OS and PS conditions relative to the NS condition. There was a group x condition interaction such that patients had significantly lower PS suppression index than controls, but there were no group differences in the OS suppression index. We conclude that individuals with schizophrenia possess an abnormality in surround suppression that is specific for stimulus orientation. In conjunction with physiological and anatomical evidence from basic and postmortem studies, our results suggest a deficit of inhibition in primary visual cortex in schizophrenia.
NeuroImage | 2010
David W. Bressler; Michael A. Silver
Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1, IPS2) cortical areas. Additionally, one 5-min run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy.
Current Biology | 2010
Ariel Rokem; Michael A. Silver
Learning through experience underlies the ability to adapt to novel tasks and unfamiliar environments. However, learning must be regulated so that relevant aspects of the environment are selectively encoded. Acetylcholine (ACh) has been suggested to regulate learning by enhancing the responses of sensory cortical neurons to behaviorally relevant stimuli. In this study, we increased synaptic levels of ACh in the brains of healthy human subjects with the cholinesterase inhibitor donepezil (trade name: Aricept) and measured the effects of this cholinergic enhancement on visual perceptual learning. Each subject completed two 5 day courses of training on a motion direction discrimination task, once while ingesting 5 mg of donepezil before every training session and once while placebo was administered. We found that cholinergic enhancement augmented perceptual learning for stimuli having the same direction of motion and visual field location used during training. In addition, perceptual learning with donepezil was more selective to the trained direction of motion and visual field location. These results, combined with previous studies demonstrating an increase in neuronal selectivity following cholinergic enhancement, suggest a possible mechanism by which ACh augments neural plasticity by directing activity to populations of neurons that encode behaviorally relevant stimulus features.
Neuropsychopharmacology | 2010
Ariel Rokem; Ayelet N. Landau; Dave Garg; William Prinzmetal; Michael A. Silver
Voluntary visual spatial attention can be allocated in a goal-oriented manner to locations containing behaviorally relevant information. In contrast, involuntary attention is automatically captured by salient events. Allocation of attention is known to be modulated by release of the neurotransmitter acetylcholine (ACh) in cerebral cortex. We used an anti-predictive spatial cueing task to assess the effects of pharmacological enhancement of cholinergic transmission on behavioral measures of voluntary and involuntary attention in healthy human participants. Each trial began with the presentation of a cue in a peripheral location. In 80% of the trials, a target then appeared in a location opposite the cue. In the remaining 20% of trials, the target appeared in the cue location. For trials with short stimulus onset asynchrony (SOA) between cue and target, involuntary capture of attention resulted in shorter reaction times (RTs) to targets presented at the cue location. For long SOA trials, allocation of voluntary attention resulted in the opposite pattern: RTs were shorter when the target appeared in the expected (opposite) location. Each subject participated in two sessions: one in which the cholinesterase inhibitor donepezil was administered to increase synaptic ACh levels and one in which placebo was administered. Donepezil selectively improved performance (reduced RT) for long SOA trials in which targets appeared in the expected location. Thus, cholinergic enhancement augments the benefits of voluntary attention but does not affect involuntary attention, suggesting that they rely on different neurochemical mechanisms.
Brain Research | 1979
Michael A. Silver; David M. Jacobowitz
This study sought to determine whether the administration in vivo of antibody to dopamine-beta-hydroxylase (AD beta H) is taken up by central noradrenergic neurons and transported by retrograde flow to the cell bodies of origin. AD beta H serum or preimmune serum (control) in volumes of 1--20 microliter were stereotaxically injected into the lateral ventricle. Rats were sacrificed at times ranging from 1 h to 8 days. Cryostat sections were stained with fluorescein conjugated IgG. After 24 h, a bilateral granular fluorescence was seen only in neuronal cell bodies corresponding to noradrenergic cell groups A1--A7 with the most intense fluorescence localized within perikarya and processes of the locus coeruleus (A6) and subcoeruleus. This technique also permitted the visualization of the ascending dorsal and ventral noradrenergic bundles as well as varicose fibers and terminals in a pattern identical to that reported with histofluorescence, autoradiographic, biochemical and classical immunofluorescence techniques for the identification of noradrenergic fiber distributions. At 3 and 6 h, the first detectable fluorescence was observed in forebrain noradrenergic terminals and in fibers of the dorsal and ventral noradrenergic bundles. At 10 h fluorescent varicosities were first visualized within the caudal dorsal bundle and some cytoplasmic fluorescent particles were seen within locus coeruleus cell bodies. After 18 h locus coeruleus and subcoeruleus cell bodies were heavily stained, whereas medullary noradrenergic cell groups and nerve fibers were not labeled until after 24 h. An intense locus coeruleus fluorescence remained for 3 days and was completely absent after 6 days. Bilateral transection of the dorsal noradrenergic bundle in the rostral mesencephalon, at the time of injection, effectively blocked the retrograde transport of fluorescing material to the locus coeruleus. The overall staining pattern suggests that, in vivo, central noradrenergic fibers are capable of taking up antibody to dopamine-beta-hydroxylase. The ability of a dorsal bundle transection to abolish locus coeruleus staining, as well as the time course of AD beta H staining in noradrenergic neurons, suggests that AD beta H is transported via a rapid retrograde flow process. This technique combines retrograde transport of a marker protein with the sensitivity and specificity of immunocytochemical procedures to provide a new tool for the neuroanatomical study of neurotransmitter systems.