Michael A. Solomon
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael A. Solomon.
Cytometry Part B-clinical Cytometry | 2005
Sameena S. Khan; Michael A. Solomon; J. Philip McCoy
The finding of angiogenic and vasculogenic cells in the peripheral circulation may have profound effects on the course of a variety of diseases ranging from cancer to cardiovascular disease. These cells are ascribed to be endothelial in nature and are generally referred to as circulating endothelial cells if mature or as endothelial progenitor cells if immature. Different approaches have been used to detect these cells, including in vitro culture, magnetic bead isolation, and flow cytometry. We review flow cytometric methods for the detection and enumeration of these cells and provide technical suggestions to promote the accurate enumeration of circulating endothelial cells and endothelial progenitor cells. Published 2005 Wiley‐Liss, Inc.
Blood | 2013
Steven B. Solomon; Dong Wang; Junfeng Sun; Tamir Kanias; Jing Feng; Christine C. Helms; Michael A. Solomon; Meghna Alimchandani; Martha Quezado; Mark T. Gladwin; Daniel B. Kim-Shapiro; Harvey G. Klein; Charles Natanson
Two-year-old purpose-bred beagles (n = 24) infected with Staphylococcus aureus pneumonia were randomized in a blinded fashion for exchange transfusion with either 7- or 42-day-old canine universal donor blood (80 mL/kg in 4 divided doses). Older blood increased mortality (P = .0005), the arterial alveolar oxygen gradient (24-48 hours after infection; P ≤ .01), systemic and pulmonary pressures during transfusion (4-16 hours) and pulmonary pressures for ~ 10 hours afterward (all P ≤ .02). Further, older blood caused more severe lung damage, evidenced by increased necrosis, hemorrhage, and thrombosis (P = .03) noted at the infection site postmortem. Plasma cell–free hemoglobin and nitric oxide (NO) consumption capability were elevated and haptoglobin levels were decreased with older blood during and for 32 hours after transfusion (all P ≤ .03). The low haptoglobin (r = 0.61; P = .003) and high NO consumption levels at 24 hours (r = −0.76; P < .0001) were associated with poor survival. Plasma nontransferrin-bound and labile iron were significantly elevated only during transfusion (both P = .03) and not associated with survival (P = NS). These data from canines indicate that older blood after transfusion has a propensity to hemolyze in vivo, releases vasoconstrictive cell-free hemoglobin over days, worsens pulmonary hypertension, gas exchange, and ischemic vascular damage in the infected lung, and thereby increases the risk of death from transfusion.
Circulation | 2007
Nalini Raghavachari; Xiuli Xu; Amy Harris; Jose Villagra; Carolea Logun; Jennifer Barb; Michael A. Solomon; Robert L. Danner; Gregory J. Kato; Peter J. Munson; Sidney M. Morris; Mark T. Gladwin
Background— In sickle cell disease, ischemia-reperfusion injury and intravascular hemolysis produce endothelial dysfunction and vasculopathy characterized by reduced nitric oxide and arginine bioavailability. Recent functional studies of platelets in patients with sickle cell disease reveal a basally activated state, which suggests that pathological platelet activation may contribute to sickle cell disease vasculopathy. Methods and Results— Studies were therefore undertaken to examine transcriptional signaling pathways in platelets that may be dysregulated in sickle cell disease. We demonstrate and validate in the present study the feasibility of comparative platelet transcriptome studies on clinical samples from single donors by the application of RNA amplification followed by microarray-based analysis of 54 000 probe sets. Data mining an existing microarray database, we identified 220 highly abundant genes in platelets and a subset of 72 relatively platelet-specific genes, defined by >10-fold increased expression compared with the median of other cell types in the database with amplified transcripts. The highly abundant platelet transcripts found in the present study included 82% or 70% of platelet-abundant genes identified in 2 previous gene expression studies on nonamplified mRNA from pooled or apheresis samples, respectively. On comparing the platelet gene expression profiles in 18 patients with sickle cell disease in steady state to those of 12 black control subjects, at a 3-fold cutoff and 5% false-discovery rate, we identified ≈100 differentially expressed genes, including multiple genes involved in arginine metabolism and redox homeostasis. Further characterization of these pathways with real-time polymerase chain reaction and biochemical assays revealed increased arginase II expression and activity and decreased platelet polyamine levels. Conclusions— The present studies suggest a potential pathogenic role for platelet arginase and altered arginine and polyamine metabolism in sickle cell disease and provide a novel framework for the study of disease-specific platelet biology.
Blood | 2014
Irene Cortés-Puch; Dong Wang; Junfeng Sun; Steven B. Solomon; Kenneth E. Remy; Melinda Fernandez; Jing Feng; Tamir Kanias; Landon Bellavia; Derek Sinchar; Andreas Perlegas; Michael A. Solomon; Walter Kelley; Mark A. Popovsky; Mark T. Gladwin; Daniel B. Kim-Shapiro; Harvey G. Klein; Charles Natanson
In a randomized controlled blinded trial, 2-year-old purpose-bred beagles (n = 24), with Staphylococcus aureus pneumonia, were exchanged-transfused with either 7- or 42-day-old washed or unwashed canine universal donor blood (80 mL/kg in 4 divided doses). Washing red cells (RBC) before transfusion had a significantly different effect on canine survival, multiple organ injury, plasma iron, and cell-free hemoglobin (CFH) levels depending on the age of stored blood (all, P < .05 for interactions). Washing older units of blood improved survival rates, shock score, lung injury, cardiac performance and liver function, and reduced levels of non-transferrin bound iron and plasma labile iron. In contrast, washing fresh blood worsened all these same clinical parameters and increased CFH levels. Our data indicate that transfusion of fresh blood, which results in less hemolysis, CFH, and iron release, is less toxic than transfusion of older blood in critically ill infected subjects. However, washing older blood prevented elevations in plasma circulating iron and improved survival and multiple organ injury in animals with an established pulmonary infection. Our data suggest that fresh blood should not be washed routinely because, in a setting of established infection, washed RBC are prone to release CFH and result in worsened clinical outcomes.
BMC Immunology | 2007
Mohamed F Elshal; Sameena S. Khan; Nalini Raghavachari; Yoshiyuki Takahashi; Jennifer Barb; James J Bailey; Peter J. Munson; Michael A. Solomon; Robert L. Danner; J. Philip McCoy
BackgroundCD146 is a well described homotypic adhesion molecule found on endothelial cells and a limited number of other cell types. In cells from the peripheral circulation, CD146 has also been reported to be on activated lymphocytes in vitro and in vivo. The function associated with CD146 expression on lymphoid cells is unknown and very little information is available concerning the nature of CD146+ lymphocytes. In the current study, lymphocytes from healthy donors were characterized based upon the presence or absence of CD146 expression.ResultsCD146 was expressed on a low percentage of circulating T lymphocytes, B lymphocytes, and NK cells in healthy individuals. CD146 expression can be induced and upregulated in vitro on both B cells and T cells, but does not correlate with the expression of other markers of T cell activation. CD146 positive T cells do not represent clonal expansions as determined with the use of anti Vβ reagents. Data suggest that CD146 positive cells have enhanced adherence to endothelial monolayers in vitro. Gene profiling and immunophenotyping studies between CD146+ and CD146- T cells revealed several striking genotypic distinctions such as the upregulation of IL-8 and phenotypic differences including the paucity of CCR7 and CD45RA among CD146 positive T cells, consistent with effector memory function. A number of genes involved in cell adhesion, signal transduction, and cell communication are dramatically upregulated in CD146+ T cells compared to CD146- T cells.ConclusionCD146 appears to identify small, unique populations of T as well as B lymphocytes in the circulation. The T cells have immunophenotypic characteristics of effector memory lymphocytes. The characteristics of these CD146+ lymphocytes in the circulation, together with the known functions in cell adhesion of CD146 on endothelial cells, suggests that these lymphocytes may represent a small subpopulation of cells primed to adhere to the endothelium and possibly extravasate to sites of inflammation.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2009
Aditi Desai; Alexander P. Glaser; Delong Liu; Nalini Raghavachari; Arnon Blum; Gloria Zalos; J. Margaret Lippincott; J. Philip McCoy; Peter J. Munson; Michael A. Solomon; Robert L. Danner; Richard O. Cannon
Objective—An assay proposed to quantify endothelial progenitor cell (EPC) colonies in humans was investigated to determine the phenotype of recovered cells and their relevance to in vivo endothelial function. Methods and Results—Twelve sedentary subjects participating in a worksite wellness program underwent endothelial flow-mediated dilation (FMD) testing of the brachial artery and blood sampling for EPC colony assay. Microarray-based genotypic characterization of colonies showed surface markers consistent with T lymphocyte phenotype, but not with an EPC (CD34, CD133, VEGFR-2) or endothelial (CD146) phenotype. Gene expression patterns more closely matched T lymphocytes (r=0.87) than endothelial cells (r=0.66) in our microarray database. Flow cytometry of colonies confirmed large populations of CD3+CD45+ T cells (>75%) and few CD146+CD45− endothelial cells (<1%). Further, there was no correlation between colony number and the magnitude of FMD (r=−0.1512, P=0.6389). After exercise training, subjects improved FMD, from 6.7±2.0 to 8.7±1.9% (P=0.0043). Colonies also increased (P=0.0210), but without relation to FMD (r=0.1074, P=0.7396). T lymphocyte phenotype persisted after exercise (r=0.87). Conclusions—Cells in a commonly used EPC colony assay have a gene expression and cell surface marker profile consistent with a predominance of T lymphocytes and have an unclear relevance to endothelial function, either before or after exercise training.
Physiological Genomics | 2011
J. Eduardo Rame; Lili A. Barouch; Michael N. Sack; Edward G. Lynn; Mones Abu-Asab; Maria Tsokos; Steven J. Kern; Jennifer Barb; Peter J. Munson; Marc K. Halushka; Karen L. Miller; Karen Fox-Talbot; Jianhua Zhang; Joshua M. Hare; Michael A. Solomon; Robert L. Danner
OBJECTIVE Evidence supports an antilipotoxic role for leptin in preventing inappropriate peripheral tissue lipid deposition. Obese, leptin-deficient mice develop left ventricular (LV) hypertrophy and myocardial steatosis with increased apoptosis and decreased longevity. Here we investigated the cardiac effects of caloric restriction versus leptin repletion in obese leptin-deficient (ob/ob) mice. METHODS Echocardiography was performed on 7 mo old C57BL/6 wild-type mice (WT) and ob/ob mice fed ad libitum, leptin-repleted (LR-ob/ob), or calorie-restricted (CR-ob/ob) for 4 wk. Ventricular tissue was examined by electron microscopy (EM), triglyceride (TAG) content, oil red O staining, mitochondrial coupling assay, and microarray expression profiling. RESULTS LR and CR-ob/ob mice showed decreased body and heart weight, and LV wall thickness compared with ad libitum ob/ob mice. LV fractional shortening was decreased in ad libitum ob/ob mice, but restored to WT in LR and CR groups. However, myocardial lipid content by EM and TAG analysis revealed persistent cardiac steatosis in the CR-ob/ob group. Although CR restored mitochondrial coupling to WT levels, PPARα was suppressed and genes associated with oxidative stress and cell death were upregulated in CR-ob/ob animals. In contrast, LR eliminated cardiac steatosis, normalized mitochondrial coupling, and restored PGC1α and PPARα expression, while inducing core genes involved in glycerolipid/free fatty acid (GL/FFA) cycling, a thermogenic pathway that can reduce intracellular lipids. CONCLUSIONS Thus, CR in the absence of leptin fails to normalize cardiac steatosis. GL/FFA cycling may be, at least in part, leptin-dependent and a key pathway that protects the heart from lipid accumulation.
Trials | 2013
Jason M. Elinoff; J E Rame; Paul R. Forfia; Mary K. Hall; Junfeng Sun; Ahmed M. Gharib; Khaled Z. Abd-Elmoniem; Grace Graninger; Bonnie Harper; Robert L. Danner; Michael A. Solomon
BackgroundPulmonary arterial hypertension is a rare disorder associated with poor survival. Endothelial dysfunction plays a central role in the pathogenesis and progression of pulmonary arterial hypertension. Inflammation appears to drive this dysfunctional endothelial phenotype, propagating cycles of injury and repair in genetically susceptible patients with idiopathic and disease-associated pulmonary arterial hypertension. Therapy targeting pulmonary vascular inflammation to interrupt cycles of injury and repair and thereby delay or prevent right ventricular failure and death has not been tested. Spironolactone, a mineralocorticoid and androgen receptor antagonist, has been shown to improve endothelial function and reduce inflammation. Current management of patients with pulmonary arterial hypertension and symptoms of right heart failure includes use of mineralocorticoid receptor antagonists for their diuretic and natriuretic effects. We hypothesize that initiating spironolactone therapy at an earlier stage of disease in patients with pulmonary arterial hypertension could provide additional benefits through anti-inflammatory effects and improvements in pulmonary vascular function.Methods/DesignSeventy patients with pulmonary arterial hypertension without clinical evidence of right ventricular failure will be enrolled in a randomized, double-blinded, placebo-controlled trial to investigate the effect of early treatment with spironolactone on exercise capacity, clinical worsening and vascular inflammation in vivo. Our primary endpoint is change in placebo-corrected 6-minute walk distance at 24 weeks and the incidence of clinical worsening in the spironolactone group compared to placebo. At a two-sided alpha level of 0.05, we will have at least 84% power to detect an effect size (group mean difference divided by standard deviation) of 0.9 for the difference in the change of 6-minute walk distance from baseline between the two groups. Secondary endpoints include the effect of spironolactone on the change in placebo-corrected maximal oxygen consumption; plasma markers of vascular inflammation and peripheral blood mononuclear cell gene expression profiles; sympathetic nervous system activation, renin-angiotensin-aldosterone system activation and sex hormone metabolism; and right ventricular structure and function using echocardiography and novel high-resolution magnetic resonance imaging-based techniques. Safety and tolerability of spironolactone will be assessed with periodic monitoring for hyperkalemia and renal insufficiency as well as the incidence of drug discontinuation for untoward effects.Trial registrationClinicalTrials.gov: NCT01712620
Critical Care Medicine | 2009
Steven B. Solomon; Peter C. Minneci; Katherine J. Deans; Jing Feng; Peter Q. Eichacker; Steven M. Banks; Robert L. Danner; Charles Natanson; Michael A. Solomon
Background:Fluid refractory septic shock can develop into a hypodynamic cardiovascular state in both children and adults. Despite management of these patients with empirical inotropic therapy (with or without a vasodilator), mortality remains high. Objectives:The effect of cardiovascular support using intra-aortic balloon counterpulsation was investigated in a hypodynamic, mechanically ventilated canine sepsis model in which cardiovascular and pulmonary support were titrated based on treatment protocols. Methods:Each week, three animals (n = 33, 10–12 kg) were administered intrabronchial Staphylococcus aureus challenge and then randomized to receive intra-aortic balloon counterpulsation for 68 hrs or no intra-aortic balloon counterpulsation (control). Bacterial doses were increased over the study (4–8 × 109 cfu/kg) to assess the effects of intra-aortic balloon counterpulsation during sepsis with increasing risk of death. Main Results:Compared with lower bacterial doses (4–7 × 109 colony-forming units/kg), control animals challenged with the highest dose (8 × 109 colony-forming units/kg) had a greater risk of death (mortality rate 86% vs. 17%), with worse lung injury ([A − a]o2), and renal dysfunction (creatinine). These sicker animals required higher norepinephrine infusion rates to maintain blood pressure (and higher Fio2) and positive end-expiratory pressure levels to maintain oxygenation (p ≤ 0.04 for all). In animals receiving the highest bacterial dose, intra-aortic balloon counterpulsation improved survival time (23.4 ± 10 hrs longer; p = 0.003) and lowered norepinephrine requirements (0.43 ± 0.17 &mgr;g/kg/min; p = 0.002) and systemic vascular resistance index (1.44 ± 0.57 dynes/s/cm5/kg; p = 0.0001) compared with controls. Despite these beneficial effects, intra-aortic balloon counterpulsation was associated with an increase in blood urea nitrogen (p = 0.002) and creatinine (p = 0.12). In animals receiving lower doses of bacteria, intra-aortic balloon counterpulsation had no significant effects on survival or renal function. Conclusions:In a canine model of severe septic shock with a low cardiac index, intra-aortic balloon counterpulsation prolongs survival time and lowers vasopressor requirements.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2016
Keytam S. Awad; Jason M. Elinoff; Shuibang Wang; Salina Gairhe; Gabriela A. Ferreyra; Rongman Cai; Junfeng Sun; Michael A. Solomon; Robert L. Danner
A proliferative endothelial cell phenotype, inflammation, and pulmonary vascular remodeling are prominent features of pulmonary arterial hypertension (PAH). Bone morphogenetic protein type II receptor (BMPR2) loss-of-function is the most common cause of heritable PAH and has been closely linked to the formation of pathological plexiform lesions. Although some BMPR2 mutations leave ligand-dependent responses intact, the disruption of ligand-independent, noncanonical functions are universal among PAH-associated BMPR2 genotypes, but incompletely understood. This study examined the noncanonical signaling consequences of BMPR2 silencing in human pulmonary artery endothelial cells to identify potential therapeutic targets. BMPR2 siRNA silencing resulted in a proliferative, promigratory pulmonary artery endothelial cell phenotype and disruption of cytoskeletal architecture. Expression profiling closely reflected these phenotypic changes. Gene set enrichment and promoter analyses, as well as the differential expression of pathway components identified Ras/Raf/ERK signaling as an important consequence of BMPR2 silencing. Raf family members and ERK1/2 were constitutively activated after BMPR2 knockdown. Two Raf inhibitors, sorafenib and AZ628, and low-dose nintedanib, a triple receptor tyrosine kinase inhibitor upstream from Ras, reversed the abnormal proliferation and hypermotility of BMPR2 deficiency. Inhibition of dysregulated Ras/Raf/ERK signaling may be useful in reversing vascular remodeling in PAH.