Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Teitell is active.

Publication


Featured researches published by Michael A. Teitell.


Cell Stem Cell | 2009

Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures

Mark H. Chin; Mike J. Mason; Wei Xie; Stefano Volinia; Mike Singer; Cory Peterson; G. Ambartsumyan; Otaren Aimiuwu; Laura Richter; Jin Zhang; Ivan Khvorostov; Vanessa Ott; Michael Grunstein; Neta Lavon; Nissim Benvenisty; Carlo M. Croce; Amander T. Clark; Tim Baxter; April D. Pyle; Michael A. Teitell; Matteo Pelegrini; Kathrin Plath; William E. Lowry

Induced pluripotent stem cells (iPSCs) outwardly appear to be indistinguishable from embryonic stem cells (ESCs). A study of gene expression profiles of mouse and human ESCs and iPSCs suggests that, while iPSCs are quite similar to their embryonic counterparts, a recurrent gene expression signature appears in iPSCs regardless of their origin or the method by which they were generated. Upon extended culture, hiPSCs adopt a gene expression profile more similar to hESCs; however, they still retain a gene expression signature unique from hESCs that extends to miRNA expression. Genome-wide data suggested that the iPSC signature gene expression differences are due to differential promoter binding by the reprogramming factors. High-resolution array profiling demonstrated that there is no common specific subkaryotypic alteration that is required for reprogramming and that reprogramming does not lead to genomic instability. Together, these data suggest that iPSCs should be considered a unique subtype of pluripotent cell.


The EMBO Journal | 2011

UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells

Jin Zhang; Ivan Khvorostov; Jason S. Hong; Yavuz Oktay; Laurent Vergnes; Esther Nuebel; Paulin N. Wahjudi; Kiyoko Setoguchi; Geng Wang; Anna Do; Hea Jin Jung; J. Michael McCaffery; Irwin J. Kurland; Karen Reue; Wai Nang P Lee; Carla M. Koehler; Michael A. Teitell

It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O2 at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F1F0 ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential.


American Journal of Clinical Pathology | 2005

Blastic NK-cell lymphomas (agranular CD4+CD56+ hematodermic neoplasms): a review.

Tony Petrella; Martine Bagot; Rein Willemze; M. Beylot-Barry; Béatrice Vergier; Michèle Delaunay; Chris J. L. M. Meijer; Philippe Courville; Pascal Joly; F. Grange; Anne de Muret; L. Machet; Anne Dompmartin; Jacques Bosq; Anne Durlach; Philippe Bernard; Sophie Dalac; Pierre Dechelotte; M. D’Incan; Janine Wechsler; Michael A. Teitell

Blastic natural killer (NK) cell lymphoma (also termed CD4+CD56+ hematodermic neoplasm) is a recently described entity, with the first case reported in 1994. It was suggested initially that the disease originates from NK cells. Since 1994, single cases and a few small series have been published. In this review, data from the literature and a series of 30 cases from the French and Dutch study groups on cutaneous lymphomas are discussed. The major clinical, histopathologic, and phenotypic aspects of the disease and diagnostic criteria and data suggesting a plasmacytoid dendritic cell origin for the tumor cells are provided.


Cell Stem Cell | 2012

Metabolic Regulation in Pluripotent Stem Cells during Reprogramming and Self-Renewal

Jin Zhang; Esther Nuebel; George Q. Daley; Carla M. Koehler; Michael A. Teitell

Small, rapidly dividing pluripotent stem cells (PSCs) have unique energetic and biosynthetic demands compared with typically larger, quiescent differentiated cells. Shifts between glycolysis and oxidative phosphorylation with PSC differentiation or reprogramming to pluripotency are accompanied by changes in cell cycle, biomass, metabolite levels, and redox state. PSC and cancer cell metabolism are overtly similar, with metabolite levels influencing epigenetic/genetic programs. Here, we discuss the emerging roles for metabolism in PSC self-renewal, differentiation, and reprogramming.


Stem Cells | 2009

Derivation of Primordial Germ Cells from Human Embryonic and Induced Pluripotent Stem Cells Is Significantly Improved by Coculture with Human Fetal Gonadal Cells

Tae Sub Park; Zoran Galic; Anne E. Conway; Anne Lindgren; Benjamin J. van Handel; Mattias Magnusson; Laura Richter; Michael A. Teitell; Hanna Mikkola; William E. Lowry; Kathrin Plath; Amander T. Clark

The derivation of germ cells from human embryonic stem cells (hESCs) or human induced pluripotent stem (hIPS) cells represents a desirable experimental model and potential strategy for treating infertility. In the current study, we developed a triple biomarker assay for identifying and isolating human primordial germ cells (PGCs) by first evaluating human PGC formation during the first trimester in vivo. Next, we applied this technology to characterizing in vitro derived PGCs (iPGCs) from pluripotent cells. Our results show that codifferentiation of hESCs on human fetal gonadal stromal cells significantly improves the efficiency of generating iPGCs. Furthermore, the efficiency was comparable between various pluripotent cell lines regardless of origin from the inner cell mass of human blastocysts (hESCs), or reprogramming of human skin fibroblasts (hIPS). To better characterize the iPGCs, we performed Real‐time polymerase chain reaction, microarray, and bisulfite sequencing. Our results show that iPGCs at day 7 of differentiation are transcriptionally distinct from the somatic cells, expressing genes associated with pluripotency and germ cell development while repressing genes associated with somatic differentiation (specifically multiple HOX genes). Using bisulfite sequencing, we show that iPGCs initiate imprint erasure from differentially methylated imprinted regions by day 7 of differentiation. However, iPGCs derived from hIPS cells do not initiate imprint erasure as efficiently. In conclusion, our results indicate that triple positive iPGCs derived from pluripotent cells differentiated on hFGS cells correspond to committed first trimester germ cells (before 9 weeks) that have initiated the process of imprint erasure. STEM CELLS 2009;27:783–795


Proceedings of the National Academy of Sciences of the United States of America | 2009

ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells

Yang Zong; Li Xin; Andrew S. Goldstein; Devon A. Lawson; Michael A. Teitell; Owen N. Witte

Chromosomal rearrangements involving erythroblast transformation specific (ETS) family transcription factors were recently defined as the most common genetic alterations in human prostate cancer. Despite their prevalence, it is unclear what quantitative role they play in either initiation or progression of the disease. Using a lentiviral transduction and dissociated cell prostate regeneration approach, we find that acutely increased expression of ETS proteins in adult murine prostate epithelial cells is sufficient to induce the formation of epithelial hyperplasia and focal prostatic intraepithelial neoplasia (PIN) lesions, but not progression to carcinoma. However, combined expression of ERG with additional genetic alternations associated with human prostate cancer can lead to aggressive disease. Although ERG overexpression does not cooperate with loss of the tumor suppressor p53, it does collaborate with alterations in PI3K signaling, such as Pten knockdown or AKT up-regulation, to produce a well-differentiated adenocarcinoma. Most striking is our finding that overexpression of androgen receptor (AR) does not give rise to any hyperplastic lesions, but when combined with high levels of ERG, it promotes the development of a more poorly differentiated, invasive adenocarcinoma. These findings suggest that in human prostate cancer, the most potent function of ETS gene fusions may be to synergize with alternative genetic events and provide different pathways for carcinoma production and invasive behavior. Our results provide direct evidence for selective cooperating events in ERG-induced prostate tumorigenesis and offer a rational basis for combined therapeutic interventions against multiple oncogenic pathways in prostate cancer.


Nature | 2014

The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR

Randall M. Chin; Xudong Fu; Melody Y. Pai; Laurent Vergnes; Heejun Hwang; Gang Deng; Simon Diep; Brett Lomenick; Vijaykumar S. Meli; Gabriela C. Monsalve; Eileen Hu; Stephen A. Whelan; Jennifer X. Wang; Gwanghyun Jung; Gregory M. Solis; Farbod Fazlollahi; Chitrada Kaweeteerawat; Austin Quach; Mahta Nili; Abby S. Krall; Hilary A. Godwin; Helena R. Chang; Kym F. Faull; Feng Guo; Meisheng Jiang; Sunia A. Trauger; Alan Saghatelian; Daniel Braas; Heather R. Christofk; Catherine F. Clarke

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.


American Journal of Medical Genetics Part A | 2006

HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy.

Anne L. Estep; William E. Tidyman; Michael A. Teitell; Philip D. Cotter; Katherine A. Rauen

Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003 ]. In this study, the HRAS coding region was sequenced for mutations in a large, well‐characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G → A transition in codon 12. Less frequent mutations included 35G → C (codon 12) and 37G → T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G → A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G → C had cardiac arrhythmias whereas one patient with a 37G → T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G → A mutation. Loss of the wild‐type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio‐facio‐cutaneuos (CFC) syndromes, the HRAS coding region was sequenced in a well‐characterized CFC cohort. No mutations were found which support a distinct genetic etiology between CS and CFC syndromes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor

Li Xin; Michael A. Teitell; Devon A. Lawson; Andrew Kwon; Ingo K. Mellinghoff; Owen N. Witte

Classic work by Huggins and Hodges demonstrated that human prostate cancer regresses dramatically during antihormonal therapy but recurs frequently with androgen independence. Perturbations in the androgen receptor (AR) and PTEN–AKT signaling axes are significantly correlated with the progression of prostate cancer. Genetic alterations of the AR cause receptor hypersensitivity, promiscuity, and androgen-independent receptor transactivation. Prostate cancers maintain an elevated AKT activity through the loss of PTEN function or the establishment of autocrine signaling by growth factors and cytokines. We used an in vivo prostate regeneration system to investigate the biological potency of the potential crosstalk between these two signal transduction pathways. We demonstrate a direct synergy between AKT and AR signaling that is sufficient to initiate and progress naïve adult murine prostatic epithelium to frank carcinoma and override the effect of androgen ablation. Both genotropic and nongenotropic signals mediated by AR are essential for this synergistic effect. However, phosphorylation of AR by AKT at Ser-213 and Ser-791 is not critical for this synergy. These results suggest that more efficient therapeutics for advanced prostate cancer may need to target simultaneously AR signaling and AKT or the growth factor receptor tyrosine kinases that activate AKT.


Nature Protocols | 2012

Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells

Jin Zhang; Esther Nuebel; Dona R.R. Wisidagama; Kiyoko Setoguchi; Jason S. Hong; Christine M Van Horn; Sarah S Imam; Laurent Vergnes; Cindy S. Malone; Carla M. Koehler; Michael A. Teitell

Measurements of glycolysis and mitochondrial function are required to quantify energy metabolism in a wide variety of cellular contexts. In human pluripotent stem cells (hPSCs) and their differentiated progeny, this analysis can be challenging because of the unique cell properties, growth conditions and expense required to maintain these cell types. Here we provide protocols for analyzing energy metabolism in hPSCs and their early differentiated progenies that are generally applicable to mature cell types as well. Our approach has revealed distinct energy metabolism profiles used by hPSCs, differentiated cells, a variety of cancer cells and Rho-null cells. The protocols measure or estimate glycolysis on the basis of the extracellular acidification rate, and they measure or estimate oxidative phosphorylation on the basis of the oxygen consumption rate. Assays typically require 3 h after overnight sample preparation. Companion methods are also discussed and provided to aid researchers in developing more sophisticated experimental regimens for extended analyses of cellular bioenergetics.

Collaboration


Dive into the Michael A. Teitell's collaboration.

Top Co-Authors

Avatar

Pei-Yu Chiou

California NanoSystems Institute

View shared research outputs
Top Co-Authors

Avatar

Ting-Hsiang Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Reed

University of California

View shared research outputs
Top Co-Authors

Avatar

Jason S. Hong

University of California

View shared research outputs
Top Co-Authors

Avatar

Tara Teslaa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randolph Wall

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge