Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Vogelbaum is active.

Publication


Featured researches published by Michael A. Vogelbaum.


Journal of Clinical Oncology | 2010

Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group

Patrick Y. Wen; David R. Macdonald; David A. Reardon; Timothy F. Cloughesy; A. Gregory Sorensen; Evanthia Galanis; John F. DeGroot; Wolfgang Wick; Mark R. Gilbert; Andrew B. Lassman; Christina Tsien; Tom Mikkelsen; Eric T. Wong; Marc C. Chamberlain; Roger Stupp; Kathleen R. Lamborn; Michael A. Vogelbaum; Martin J. van den Bent; Susan M. Chang

Currently, the most widely used criteria for assessing response to therapy in high-grade gliomas are based on two-dimensional tumor measurements on computed tomography (CT) or magnetic resonance imaging (MRI), in conjunction with clinical assessment and corticosteroid dose (the Macdonald Criteria). It is increasingly apparent that there are significant limitations to these criteria, which only address the contrast-enhancing component of the tumor. For example, chemoradiotherapy for newly diagnosed glioblastomas results in transient increase in tumor enhancement (pseudoprogression) in 20% to 30% of patients, which is difficult to differentiate from true tumor progression. Antiangiogenic agents produce high radiographic response rates, as defined by a rapid decrease in contrast enhancement on CT/MRI that occurs within days of initiation of treatment and that is partly a result of reduced vascular permeability to contrast agents rather than a true antitumor effect. In addition, a subset of patients treated with antiangiogenic agents develop tumor recurrence characterized by an increase in the nonenhancing component depicted on T2-weighted/fluid-attenuated inversion recovery sequences. The recognition that contrast enhancement is nonspecific and may not always be a true surrogate of tumor response and the need to account for the nonenhancing component of the tumor mandate that new criteria be developed and validated to permit accurate assessment of the efficacy of novel therapies. The Response Assessment in Neuro-Oncology Working Group is an international effort to develop new standardized response criteria for clinical trials in brain tumors. In this proposal, we present the recommendations for updated response criteria for high-grade gliomas.


The New England Journal of Medicine | 2014

A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma

Mark R. Gilbert; James J. Dignam; Terri S. Armstrong; Jeffrey S. Wefel; Deborah T. Blumenthal; Michael A. Vogelbaum; Howard Colman; Arnab Chakravarti; Stephanie L. Pugh; Minhee Won; R Jeraj; Paul D. Brown; Kurt A. Jaeckle; David Schiff; Volker W. Stieber; David Brachman; Maria Werner-Wasik; Ivo W. Tremont-Lukats; Erik P. Sulman; Kenneth D. Aldape; Walter J. Curran; Minesh P. Mehta

BACKGROUND Concurrent treatment with temozolomide and radiotherapy followed by maintenance temozolomide is the standard of care for patients with newly diagnosed glioblastoma. Bevacizumab, a humanized monoclonal antibody against vascular endothelial growth factor A, is currently approved for recurrent glioblastoma. Whether the addition of bevacizumab would improve survival among patients with newly diagnosed glioblastoma is not known. METHODS In this randomized, double-blind, placebo-controlled trial, we treated adults who had centrally confirmed glioblastoma with radiotherapy (60 Gy) and daily temozolomide. Treatment with bevacizumab or placebo began during week 4 of radiotherapy and was continued for up to 12 cycles of maintenance chemotherapy. At disease progression, the assigned treatment was revealed, and bevacizumab therapy could be initiated or continued. The trial was designed to detect a 25% reduction in the risk of death and a 30% reduction in the risk of progression or death, the two coprimary end points, with the addition of bevacizumab. RESULTS A total of 978 patients were registered, and 637 underwent randomization. There was no significant difference in the duration of overall survival between the bevacizumab group and the placebo group (median, 15.7 and 16.1 months, respectively; hazard ratio for death in the bevacizumab group, 1.13). Progression-free survival was longer in the bevacizumab group (10.7 months vs. 7.3 months; hazard ratio for progression or death, 0.79). There were modest increases in rates of hypertension, thromboembolic events, intestinal perforation, and neutropenia in the bevacizumab group. Over time, an increased symptom burden, a worse quality of life, and a decline in neurocognitive function were more frequent in the bevacizumab group. CONCLUSIONS First-line use of bevacizumab did not improve overall survival in patients with newly diagnosed glioblastoma. Progression-free survival was prolonged but did not reach the prespecified improvement target. (Funded by the National Cancer Institute; ClinicalTrials.gov number, NCT00884741.).


Oncogene | 2002

Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells

Shaik O. Rahaman; Phyllis Harbor; Olga Chernova; Gene H. Barnett; Michael A. Vogelbaum; S. Jaharul Haque

Glioblastoma multiforme (GBM), the most common and malignant central nervous system tumor in humans, is highly proliferative and resistant to apoptosis. Stat3, a latent transcription factor being activated by aberrant cytokine or growth factor signaling, acts as a suppressor of apoptosis in a number of cancer cells. Here we report that GBM tumors and cell lines contain high levels of constitutively activated Stat3 when compared with normal human astrocytes, white matter, and normal tissue adjacent to tumor. The persistent activation of Stat3 is in part, attributable to an autocrine action of interleukin-6 in the GBM cell line U251. Janus kinase inhibitor AG490 inhibits Stat3 activation with a concomitant reduction in steady-state levels of Bcl-XL, Bcl-2 and Mcl-1 proteins and induces apoptosis in U251 cells as revealed by Poly (ADP-ribose) polymerase cleavage and Annexin-V staining. Expression of a dominant negative mutant Stat3 protein or treatment with AG490 markedly reduces the proliferation of U251 cells by inhibiting the constitutive activation of Stat3. These results provide evidence that constitutive activation of Stat3 contributes to the pathogenesis of glioblastoma by promoting both proliferation and survival of GBM cells. Therefore, targeting Stat3 signaling may provide a potential therapeutic intervention for GBM.


Practical radiation oncology | 2012

Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): An American Society for Radiation Oncology evidence-based guideline

May N. Tsao; Dirk Rades; Andrew Wirth; Simon S. Lo; Brita Danielson; Laurie E. Gaspar; Paul W. Sperduto; Michael A. Vogelbaum; Jeffrey D. Radawski; Jian Z. Wang; M Gillin; Najeeb Mohideen; Carol A. Hahn; Eric L. Chang

Purpose To systematically review the evidence for the radiotherapeutic and surgical management of patients newly diagnosed with intraparenchymal brain metastases. Methods and Materials Key clinical questions to be addressed in this evidence-based Guideline were identified. Fully published randomized controlled trials dealing with the management of newly diagnosed intraparenchymal brain metastases were searched systematically and reviewed. The U.S. Preventative Services Task Force levels of evidence were used to classify various options of management. Results The choice of management in patients with newly diagnosed single or multiple brain metastases depends on estimated prognosis and the aims of treatment (survival, local treated lesion control, distant brain control, neurocognitive preservation). Single brain metastasis and good prognosis (expected survival 3 months or more): For a single brain metastasis larger than 3 to 4 cm and amenable to safe complete resection, whole brain radiotherapy (WBRT) and surgery (level 1) should be considered. Another alternative is surgery and radiosurgery/radiation boost to the resection cavity (level 3). For single metastasis less than 3 to 4 cm, radiosurgery alone or WBRT and radiosurgery or WBRT and surgery (all based on level 1 evidence) should be considered. Another alternative is surgery and radiosurgery or radiation boost to the resection cavity (level 3). For single brain metastasis (less than 3 to 4 cm) that is not resectable or incompletely resected, WBRT and radiosurgery, or radiosurgery alone should be considered (level 1). For nonresectable single brain metastasis (larger than 3 to 4 cm), WBRT should be considered (level 3). Multiple brain metastases and good prognosis (expected survival 3 months or more): For selected patients with multiple brain metastases (all less than 3 to 4 cm), radiosurgery alone, WBRT and radiosurgery, or WBRT alone should be considered, based on level 1 evidence. Safe resection of a brain metastasis or metastases causing significant mass effect and postoperative WBRT may also be considered (level 3). Patients with poor prognosis (expected survival less than 3 months): Patients with either single or multiple brain metastases with poor prognosis should be considered for palliative care with or without WBRT (level 3). It should be recognized, however, that there are limitations in the ability of physicians to accurately predict patient survival. Prognostic systems such as recursive partitioning analysis, and diagnosis-specific graded prognostic assessment may be helpful. Conclusions Radiotherapeutic intervention (WBRT or radiosurgery) is associated with improved brain control. In selected patients with single brain metastasis, radiosurgery or surgery has been found to improve survival and locally treated metastasis control (compared with WBRT alone).


Lancet Oncology | 2011

Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas

M. J. van den Bent; J.S. Wefel; David Schiff; M. J. B. Taphoorn; Kurt A. Jaeckle; Larry Junck; Terri S. Armstrong; A. Choucair; Ad Waldman; Thierry Gorlia; Marc C. Chamberlain; Brigitta G. Baumert; Michael A. Vogelbaum; David R. Macdonald; David A. Reardon; Patrick Y. Wen; Susan Marina Chang; Andreas H. Jacobs

Although low-grade gliomas (LGG) have a less aggressive course than do high-grade gliomas, the outcome of these tumours is ultimately fatal in most patients. Both the tumour and its treatment can cause disabling morbidity, particularly of cognitive functions. Because many patients present with seizures only, with no other signs and symptoms, maintenance of quality of life and function constitutes a particular challenge in LGG. The slow growth pattern of most LGG, and the rare radiological true responses despite a favourable clinical response to treatment, interferes with the use of progression-free survival as the primary endpoint in trials. Overall survival as an endpoint brings logistical challenges, and is sensitive to other non-investigational salvage therapies. Clinical trials for LGG need to consider other measures of patient benefit such as cognition, symptom burden, and seizure activity, to establish whether improved survival is reflected in prolonged wellbeing. This Review investigates clinical and imaging endpoints in trials of LGG, and provides response assessment in neuro-oncology (RANO) criteria for non-enhancing tumours. Additionally, other measures for patients with brain tumours that assess outcome are described. Similar considerations are relevant for trials of high-grade gliomas, although for these tumours survival is shorter and survival endpoints generally have more value than they do for LGG.


Neuro-oncology | 2010

Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma †

Sandeep Kunwar; Susan M. Chang; Manfred Westphal; Michael A. Vogelbaum; John H. Sampson; Gene Barnett; Mark E. Shaffrey; Zvi Ram; Joseph M. Piepmeier; Michael D. Prados; David Croteau; Christoph Pedain; Pamela Leland; Syed R. Husain; Bharat H. Joshi; Raj K. Puri

Convection-enhanced delivery (CED) of cintredekin besudotox (CB) was compared with Gliadel wafers (GW) in adult patients with glioblastoma multiforme (GBM) at first recurrence. Patients were randomized 2:1 to receive CB or GW. CB (0.5 microg/mL; total flow rate 0.75 mL/h) was administered over 96 hours via 2-4 intraparenchymal catheters placed after tumor resection. GW (3.85%/7.7 mg carmustine per wafer; maximum 8 wafers) were placed immediately after tumor resection. The primary endpoint was overall survival from the time of randomization. Prestated interim analyses were built into the study design. Secondary and tertiary endpoints were safety and health-related quality-of-life assessments. From March 2004 to December 2005, 296 patients were enrolled at 52 centers. Demographic and baseline characteristics were balanced between the 2 treatment arms. Median survival was 36.4 weeks (9.1 months) for CB and 35.3 weeks (8.8 months) for GW (P = .476). For the efficacy evaluable population, the median survival was 45.3 weeks (11.3 months) for CB and 39.8 weeks (10 months) for GW (P = .310). The adverse-events profile was similar in both arms, except that pulmonary embolism was higher in the CB arm (8% vs 1%, P = .014). This is the first randomized phase III evaluation of an agent administered via CED and the first with an active comparator in GBM patients. There was no survival difference between CB administered via CED and GW. Drug distribution was not assessed and may be crucial for evaluating future CED-based therapeutics.


Journal of Clinical Oncology | 2009

End Point Assessment in Gliomas: Novel Treatments Limit Usefulness of Classical Macdonald's Criteria

Martin J. van den Bent; Michael A. Vogelbaum; Patrick Y. Wen; David R. Macdonald; Susan M. Chang

Recent trials in glioma have revealed significant limitations in the end points used. This requires a critical and comprehensive review of how brain tumor trials are conducted, particularly of which end points are defined and how response and progression are defined.


Cancer | 2003

Serum S100β: A noninvasive marker of blood-brain barrier function and brain lesions

Andrew A. Kanner; Nicola Marchi; Vincent Fazio; Marc R. Mayberg; Michael T. Koltz; Vitaly Siomin; Glen Stevens; Thomas J. Masaryk; Barbara Ayumar; Michael A. Vogelbaum; Gene H. Barnett; Damir Janigro

S100β protein is expressed constitutively by brain astrocytes. Elevated S100β levels in cerebrospinal fluid and serum reported after head trauma, subarachnoid hemorrhage, and stroke were correlated with the extent of brain damage. Because elevated serum S100β also was shown to indicate blood‐brain barrier (BBB) dysfunction in the absence of apparent brain injury, it remains unclear whether elevation of serum levels of S100β reflect BBB dysfunction, parenchymal damage, or both.


Neuro-oncology | 2011

Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma.

Baisakhi Raychaudhuri; Patricia Rayman; Joanna Ireland; Jennifer S. Ko; Brian I. Rini; Ernest C. Borden; Jorge A. Garcia; Michael A. Vogelbaum; James H. Finke

To assess the accumulation of myeloid-derived suppressor cells (MDSCs) in the peripheral blood of patients with glioma and to define their heterogeneity and their immunosuppressive function. Peripheral blood mononuclear cells (PBMCs) from healthy control subjects and from patients with newly diagnosed glioma were stimulated with anti-CD3/anti-CD28 and T cells assessed for intracellular expression of interferon (IFN)-γ. Antibody staining of PBMCs from glioma patients and healthy donors (CD33, HLADR, CD15, and CD14) followed by 4-color flow cytometry analysis-defined MDSC levels in the peripheral blood. To assess the role of MDSCs in suppressing T cell IFNγ production, PBMCs were depleted of MDSCs using anti-CD33 and anti-CD15 antibody-coated beads prior to T cell stimulation. Enzyme-linked immunosorbent assays were used to assess plasma arginase activity and the level of granulocyte colony-stimulating factor (G-CSF). Patients with glioblastoma have increased MDSC counts (CD33+HLADR-) in their blood that are composed of neutrophilic (CD15(+); >60%), lineage-negative (CD15(-)CD14(-); 31%), and monocytic (CD14(+); 6%) subsets. After stimulation, T cells from patients with glioblastoma had suppressed IFN-γ production when compared with healthy, age-matched donor T cells. Removal of MDSCs from the PBMCs with anti-CD33/CD15-coated beads significantly restored T cell function. Significant increases in arginase activity and G-CSF levels were observed in plasma specimens obtained from patients with glioblastoma. The accumulation of MDSCs in peripheral blood in patients with glioma likely promotes T cell immune suppression that is observed in this patient population. Increased plasma levels of arginase and G-CSF may relate to MDSC suppressor function and MDSC expansion, respectively, in patients with glioma.


Journal of Neurosurgery | 2010

Poor drug distribution as a possible explanation for the results of the PRECISE trial

John H. Sampson; Gary E. Archer; Christoph Pedain; Eva Wembacher-Schröder; Manfred Westphal; Sandeep Kunwar; Michael A. Vogelbaum; April Coan; James E. Herndon; Raghu Raghavan; Martin L. Brady; David A. Reardon; Allan H. Friedman; Henry S. Friedman; M. Inmaculada Rodríguez-Ponce; Susan M. Chang; Stephan Mittermeyer; Davi Croteau; Raj K. Puri; James M. Markert; Michael D. Prados; Thomas C. Chen; Adam N. Mamelak; Timothy F. Cloughesy; John S. Yu; Kevin O. Lillehei; Joseph M. Piepmeier; Edward Pan; Frank D. Vrionis; H. Lee Moffitt

OBJECT Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique. The purpose of the present work was to retrospectively analyze the expected drug distribution based on catheter positioning data available from the CED arm of the PRECISE trial. METHODS Data on catheter positioning from all patients randomized to the CED arm of the PRECISE trial were available for analyses. BrainLAB iPlan Flow software was used to estimate the expected drug distribution. RESULTS Only 49.8% of catheters met all positioning criteria. Still, catheter positioning score (hazard ratio 0.93, p = 0.043) and the number of optimally positioned catheters (hazard ratio 0.72, p = 0.038) had a significant effect on progression-free survival. Estimated coverage of relevant target volumes was low, however, with only 20.1% of the 2-cm penumbra surrounding the resection cavity covered on average. Although tumor location and resection cavity volume had no effect on coverage volume, estimations of drug delivery to relevant target volumes did correlate well with catheter score (p < 0.003), and optimally positioned catheters had larger coverage volumes (p < 0.002). Only overall survival (p = 0.006) was higher for investigators considered experienced after adjusting for patient age and Karnofsky Performance Scale score. CONCLUSIONS The potential efficacy of drugs delivered by CED may be severely constrained by ineffective delivery in many patients. Routine use of software algorithms and alternative catheter designs and infusion parameters may improve the efficacy of drugs delivered by CED.

Collaboration


Dive into the Michael A. Vogelbaum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge