Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Wortley is active.

Publication


Featured researches published by Michael A. Wortley.


The Journal of Allergy and Clinical Immunology | 2014

Tiotropium modulates transient receptor potential V1 (TRPV1) in airway sensory nerves: A beneficial off-target effect?

Mark A. Birrell; Sara Bonvini; Eric Dubuis; Sarah A. Maher; Michael A. Wortley; Megan S. Grace; Kristof Raemdonck; John J. Adcock; Maria G. Belvisi

Background Recent studies have suggested that the long-acting muscarinic receptor antagonist tiotropium, a drug widely prescribed for its bronchodilator activity in patients with chronic obstructive pulmonary disease and asthma, improves symptoms and attenuates cough in preclinical and clinical tussive agent challenge studies. The mechanism by which tiotropium modifies tussive responses is not clear, but an inhibition of vagal tone and a consequent reduction in mucus production from submucosal glands and bronchodilation have been proposed. Objective The aim of this study was to investigate whether tiotropium can directly modulate airway sensory nerve activity and thereby the cough reflex. Methods We used a conscious cough model in guinea pigs, isolated vagal sensory nerve and isolated airway neuron tissue– and cell-based assays, and in vivo single-fiber recording electrophysiologic techniques. Results Inhaled tiotropium blocked cough and single C-fiber firing in the guinea pig to the transient receptor potential (TRP) V1 agonist capsaicin, a clinically relevant tussive stimulant. Tiotropium and ipratropium, a structurally similar muscarinic antagonist, inhibited capsaicin responses in isolated guinea pig vagal tissue, but glycopyrrolate and atropine did not. Tiotropium failed to modulate other TRP channel–mediated responses. Complementary data were generated in airway-specific primary ganglion neurons, demonstrating that tiotropium inhibited capsaicin-induced, but not TRPA1-induced, calcium movement and voltage changes. Conclusion For the first time, we have shown that tiotropium inhibits neuronal TRPV1-mediated effects through a mechanism unrelated to its anticholinergic activity. We speculate that some of the clinical benefit associated with taking tiotropium (eg, in symptom control) could be explained through this proposed mechanism of action.


American Journal of Respiratory and Critical Care Medicine | 2016

Neurophenotypes in Airway Diseases. Insights from Translational Cough Studies

Maria G. Belvisi; Mark A. Birrell; Saifudin Khalid; Michael A. Wortley; Rachel Dockry; Julie Coote; Kimberley Holt; Eric Dubuis; Angela Kelsall; Sarah A. Maher; Sara Bonvini; Ashley Woodcock; Jaclyn A. Smith

RATIONALE Most airway diseases, including chronic obstructive pulmonary disease (COPD), are associated with excessive coughing. The extent to which this may be a consequence of increased activation of vagal afferents by pathology in the airways (e.g., inflammatory mediators, excessive mucus) or an altered neuronal phenotype is unknown. Understanding whether respiratory diseases are associated with dysfunction of airway sensory nerves has the potential to identify novel therapeutic targets. OBJECTIVES To assess the changes in cough responses to a range of inhaled irritants in COPD and model these in animals to investigate the underlying mechanisms. METHODS Cough responses to inhaled stimuli in patients with COPD, healthy smokers, refractory chronic cough, asthma, and healthy volunteers were assessed and compared with vagus/airway nerve and cough responses in a cigarette smoke (CS) exposure guinea pig model. MEASUREMENTS AND MAIN RESULTS Patients with COPD had heightened cough responses to capsaicin but reduced responses to prostaglandin E2 compared with healthy volunteers. Furthermore, the different patient groups all exhibited different patterns of modulation of cough responses. Consistent with these findings, capsaicin caused a greater number of coughs in CS-exposed guinea pigs than in control animals; similar increased responses were observed in ex vivo vagus nerve and neuron cell bodies in the vagal ganglia. However, responses to prostaglandin E2 were decreased by CS exposure. CONCLUSIONS CS exposure is capable of inducing responses consistent with phenotypic switching in airway sensory nerves comparable with the cough responses observed in patients with COPD. Moreover, the differing profiles of cough responses support the concept of disease-specific neurophenotypes in airway disease. Clinical trial registered with www.clinicaltrials.gov (NCT 01297790).


The Journal of Allergy and Clinical Immunology | 2016

Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate

Sara Bonvini; Mark A. Birrell; Megan S. Grace; Sarah A. Maher; John J. Adcock; Michael A. Wortley; Eric Dubuis; Yee-Man Ching; Anthony Ford; Fisnik Shala; Montserrat Miralpeix; Gema Tarrason; Jaclyn A. Smith; Maria G. Belvisi

Background Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. Objective We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. Methods We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. Results Here we show TRPV4-induced activation of guinea pig airway–specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. Conclusion This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP–mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough.


The Journal of Allergy and Clinical Immunology | 2014

Theophylline inhibits the cough reflex through a novel mechanism of action

Eric Dubuis; Michael A. Wortley; Megan S. Grace; Sarah A. Maher; John J. Adcock; Mark A. Birrell; Maria G. Belvisi

Background Theophylline has been used in the treatment of asthma and chronic obstructive pulmonary disease for more than 80 years. In addition to bronchodilator and anti-inflammatory activity, clinical studies have suggested that theophylline acts as an antitussive agent. Cough is the most frequent reason for consultation with a family doctor, and treatment options are limited. Determining how theophylline inhibits cough might lead to the development of optimized compounds. Objective We sought to investigate the inhibitory activity of theophylline on vagal sensory nerve activity and the cough reflex. Methods Using a range of techniques, we investigated the effect of theophylline on human and guinea pig vagal sensory nerve activity in vitro and on the cough reflex in guinea pig challenge models. Results Theophylline was antitussive in a guinea pig model, inhibited activation of single C-fiber afferents in vivo and depolarization of human and guinea pig vagus in vitro, and inhibited calcium influx in airway-specific neurons in vitro. A sequence of pharmacological studies on the isolated vagus and patch clamp and single-channel inside-out experiments showed that the effect of theophylline was due to an increase in the open probability of calcium-activated potassium channels. Finally, we demonstrated the antitussive activity of theophylline in a cigarette smoke exposure model that exhibited enhanced tussive responses to capsaicin. Conclusion Theophylline inhibits capsaicin-induced cough under both normal and “disease” conditions by decreasing the excitability of sensory nerves through activation of small- and intermediate-conductance calcium-activated potassium channels. These findings could lead to the development of optimized antitussive compounds with a reduced side effect potential.


European Respiratory Journal | 2015

Prostaglandin D2 and the role of the DP1, DP2 and TP receptors in the control of airway reflex events

Sarah A. Maher; Mark A. Birrell; John J. Adcock; Michael A. Wortley; Eric Dubuis; Sara Bonvini; Megan S. Grace; Maria G. Belvisi

Prostaglandin D2 (PGD2) causes cough and levels are increased in asthma suggesting that it may contribute to symptoms. Although the prostaglandin D2 receptor 2 (DP2) is a target for numerous drug discovery programmes little is known about the actions of PGD2 on sensory nerves and cough. We used human and guinea pig bioassays, in vivo electrophysiology and a guinea pig conscious cough model to assess the effect of prostaglandin D2 receptor (DP1), DP2 and thromboxane receptor antagonism on PGD2 responses. PGD2 caused cough in a conscious guinea pig model and an increase in calcium in airway jugular ganglia. Using pharmacology and receptor-deficient mice we showed that the DP1 receptor mediates sensory nerve activation in mouse, guinea pig and human vagal afferents. In vivo, PGD2 and a DP1 receptor agonist, but not a DP2 receptor agonist, activated single airway C-fibres. Interestingly, activation of DP2 inhibited sensory nerve firing to capsaicin in vitro and in vivo. The DP1 receptor could be a therapeutic target for symptoms associated with asthma. Where endogenous PGD2 levels are elevated, loss of DP2 receptor-mediated inhibition of sensory nerves may lead to an increase in vagally associated symptoms and the potential for such adverse effects should be investigated in clinical studies with DP2 antagonists. Prostaglandin D2 activates sensory nerves and evokes cough via DP1 receptors http://ow.ly/BR1kp


The Journal of Allergy and Clinical Immunology | 2017

Mechanistic link between diesel exhaust particles and respiratory reflexes

Ryan Robinson; Mark A. Birrell; John J. Adcock; Michael A. Wortley; Eric Dubuis; Shu Chen; Catriona M. McGilvery; Sheng Hu; Milo S. P. Shaffer; Sara Bonvini; Sarah A. Maher; Ian Mudway; Alexandra E. Porter; Chris Carlsten; Teresa D. Tetley; Maria G. Belvisi

Background: Diesel exhaust particles (DEPs) are a major component of particulate matter in Europes largest cities, and epidemiologic evidence links exposure with respiratory symptoms and asthma exacerbations. Respiratory reflexes are responsible for symptoms and are regulated by vagal afferent nerves, which innervate the airway. It is not known how DEP exposure activates airway afferents to elicit symptoms, such as cough and bronchospasm. Objective: We sought to identify the mechanisms involved in activation of airway sensory afferents by DEPs. Methods: In this study we use in vitro and in vivo electrophysiologic techniques, including a unique model that assesses depolarization (a marker of sensory nerve activation) of human vagus. Results: We demonstrate a direct interaction between DEP and airway C‐fiber afferents. In anesthetized guinea pigs intratracheal administration of DEPs activated airway C‐fibers. The organic extract (DEP‐OE) and not the cleaned particles evoked depolarization of guinea pig and human vagus, and this was inhibited by a transient receptor potential ankyrin‐1 antagonist and the antioxidant N‐acetyl cysteine. Polycyclic aromatic hydrocarbons, major constituents of DEPs, were implicated in this process through activation of the aryl hydrocarbon receptor and subsequent mitochondrial reactive oxygen species production, which is known to activate transient receptor potential ankyrin‐1 on nociceptive C‐fibers. Conclusions: This study provides the first mechanistic insights into how exposure to urban air pollution leads to activation of guinea pig and human sensory nerves, which are responsible for respiratory symptoms. Mechanistic information will enable the development of appropriate therapeutic interventions and mitigation strategies for those susceptible subjects who are most at risk.


American Journal of Respiratory and Critical Care Medicine | 2017

XEN-D0501, a novel TRPV1 antagonist, does not reduce cough in refractory cough patients

Maria G. Belvisi; Mark A. Birrell; Michael A. Wortley; Sarah A. Maher; Imran Satia; Huda Badri; Kimberley Holt; Patrick Round; Lorcan McGarvey; John Ford; Jaclyn A. Smith

RATIONALE Heightened cough responses to inhaled capsaicin, a transient receptor potential vanilloid 1 (TRPV1) agonist, are characteristic of patients with chronic cough. However, previously, a TRPV1 antagonist (SB-705498) failed to improve spontaneous cough frequency in these patients, despite small reductions in capsaicin-evoked cough. OBJECTIVES XEN-D0501 (a potent TRPV1 antagonist) was compared with SB-705498 in preclinical studies to establish whether an improved efficacy profile would support a further clinical trial of XEN-D0501 in refractory chronic cough. METHODS XEN-D0501 and SB-705498 were profiled against capsaicin in a sensory nerve activation assay and in vivo potency established against capsaicin-induced cough in the guinea pig. Twenty patients with refractory chronic cough participated in a double-blind, randomized, placebo-controlled crossover study evaluating the effect of 14 days of XEN-D0501 (oral, 4 mg twice daily) versus placebo on awake cough frequency (primary outcome), capsaicin-evoked cough, and patient-reported outcomes. MEASUREMENTS AND MAIN RESULTS XEN-D0501 was more efficacious and 1,000-fold more potent than SB-705498 at inhibiting capsaicin-induced depolarization of guinea pig and human isolated vagus nerve. In vivo XEN-D0501 completely inhibited capsaicin-induced cough, whereas 100 times more SB-705498 was required to achieve the same effect. In patients, XEN-D0501 substantially reduced maximal cough responses to capsaicin (mean change from baseline, XEN-D0501, -19.3 ± 16.4) coughs; placebo, -1.8 ± 5.8 coughs; P < 0.0001), but not spontaneous awake cough frequency (mean change from baseline, XEN-D0501, 6.7  ± 16.9 coughs/h; placebo, 0.4 ± 13.7 coughs/h; P = 0.41). CONCLUSIONS XEN-D0501 demonstrated superior efficacy and potency in preclinical and clinical capsaicin challenge studies; despite this improved pharmacodynamic profile, spontaneous cough frequency did not improve, ruling out TRPV1 as an effective therapeutic target for refractory cough. Clinical trial registered with www.clinicaltrialsregister.eu (2014-000306-36).


Free Radical Biology and Medicine | 2016

Cigarette smoke extract (CSE) induces transient receptor potential ankyrin 1(TRPA1) expression via activation of HIF1αin A549 cells

Yichu Nie; Chuqin Huang; Shan Zhong; Michael A. Wortley; Yulong Luo; Wei Luo; Yanqing Xie; Kefang Lai; Nanshan Zhong

We previously found that transient receptor potential ankyrin 1 (TRPA1) in guinea pig tracheal epithelial cells was elevated after 14 days of cigarette smoke (CS) exposure. However, the mechanism underlying CS-induced TRPA1 expression remains unknown. Here, we explored whether cigarette smoke extract (CSE)-induced TRPA1 expression is related with modulation of HIF1α in A549 cells. Our results showed that CSE increased TRPA1 expression in A549 cells, decreased Iκ B, PHD2, and HDAC2, and increased ROS release and nuclear translocation of NF-κ B and HIF1α. Moreover, HIF1α siRNA and/or MG132 (a proteasome inhibitor) pretreatment significantly inhibited CSE-induced TRPA1 expression and HIF1α nuclear translocation in A549 cells. However, HIF1α siRNA pretreatment did not affect CSE-induced NF-κ B nuclear translocation, suggesting that CSE-induced TRPA1 expression in A549 cells is directly mediated by HIF1α, but not by NF-κ B. Similar to CSE treatment, treatment of A549 cells with LPS caused significant increases in nuclear translocation of NF-κ B and HIF1α mRNA expression, but did not alter TRPA1 mRNA expression. However, pretreatment with PHD2 siRNA did result in increased TRPA1 mRNA expression in LPS-treated A549 cells; an effect that was inhibited by SN50 (a NF-κ B inhibitor). It suggests a role for NF-κ B to indirectly regulate TRPA1 mRNA expression via modulating HIF1α mRNA transcription. In addition, treatment cells with HDAC2 siRNA plus 2%CSE resulted in increased HIF1α nuclear translocation and TRPA1 expression, which was significantly inhibited by MG132 and HIF1α siRNA. These results suggest that HDAC2 indirectly modulates TRPA1 expression by promoting the DNA-binding activity of HIF1α. These findings show that CSE increases TRPA1 expression in airway epithelial cells by directly activating HIF1α, and that this increase in TRPA1 expression is indirectly regulated via NF-κ B, PHD2 and HDAC2 modulation of HIF1α activity.


Handbook of experimental pharmacology | 2016

Drugs Affecting TRP Channels

Michael A. Wortley; Mark A. Birrell; Maria G. Belvisi

Chronic obstructive pulmonary disease (COPD) and asthma are both common respiratory diseases that are associated with airflow reduction/obstruction and pulmonary inflammation. Whilst drug therapies offer adequate symptom control for many mild to moderate asthmatic patients, severe asthmatics and COPD patients symptoms are often not controlled, and in these cases, irreversible structural damage occurs with disease progression over time. Transient receptor potential (TRP) channels, in particular TRPV1, TRPA1, TRPV4 and TRPM8, have been implicated with roles in the regulation of inflammation and autonomic nervous control of the lungs. Evidence suggests that inflammation elevates levels of activators and sensitisers of TRP channels and additionally that TRP channel expression may be increased, resulting in excessive channel activation. The enhanced activity of these channels is thought to then play a key role in the propagation and maintenance of the inflammatory disease state and neuronal symptoms such as bronchoconstriction and cough. For TRPM8 the evidence is less clear, but as with TRPV1, TRPA1 and TRPV4, antagonists are being developed by multiple companies for indications including asthma and COPD, which will help in elucidating their role in respiratory disease.


Current protocols in pharmacology | 2013

Harvesting, Isolation, and Functional Assessment of Primary Vagal Ganglia Cells

Eric Dubuis; Megan S. Grace; Michael A. Wortley; Mark A. Birrell; Maria G. Belvisi

Airway sensory nerves play an important defensive role in the lungs, being central in mediating protective responses like cough and bronchoconstriction. In some cases, these responses become excessive, hypersensitive, and deleterious. Understanding the normal function of airway nerves and phenotype changes associated with disease will help in developing new therapeutics for treating chronic obstructive pulmonary disease and chronic cough. Guinea pigs, and to a lesser extent ferrets, are commonly employed for studying the cough reflex because they have a cough response similar to humans. While rats and mice do not exhibit a cough response, they do possess sensory nerves that respond to the same range of tussive stimuli as guinea pigs and humans. Described in this unit are protocols for harvesting guinea pig, mouse, and rat sensory nerve cell bodies to assess molecular and functional changes associated with pulmonary disease, and to identify new targets for therapeutic intervention. Curr. Protoc. Pharmacol. 62:12.15.1‐12.15.27.

Collaboration


Dive into the Michael A. Wortley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Dubuis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Sara Bonvini

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fisnik Shala

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa D. Tetley

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge