Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Yassa is active.

Publication


Featured researches published by Michael A. Yassa.


Trends in Neurosciences | 2011

Pattern separation in the hippocampus

Michael A. Yassa; Craig E.L. Stark

The ability to discriminate among similar experiences is a crucial feature of episodic memory. This ability has long been hypothesized to require the hippocampus, and computational models suggest that it is dependent on pattern separation. However, empirical data for the role of the hippocampus in pattern separation have not been available until recently. This review summarizes data from electrophysiological recordings, lesion studies, immediate-early gene imaging, transgenic mouse models, as well as human functional neuroimaging, that provide convergent evidence for the involvement of particular hippocampal subfields in this key process. We discuss the impact of aging and adult neurogenesis on pattern separation, and also highlight several challenges to linking across species and approaches, and suggest future directions for investigation.


Hippocampus | 2010

Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults.

Michael A. Yassa; Joyce W. Lacy; Shauna M. Stark; Marilyn S. Albert; Michela Gallagher; Craig E.L. Stark

There is widespread evidence that memory deteriorates with aging, however the exact mechanisms that underlie these changes are not well understood. Given the growing size of the aging population, there is an imperative to study age‐related neurocognitive changes in order to better parse healthy from pathological aging. Using a behavioral paradigm that taxes pattern separation (the ability to differentiate novel yet similar information from previously learned information and thus avoid interference), we investigated age‐related neural changes in the human hippocampus using high‐resolution (1.5 mm isotropic) blood‐oxygenation level‐dependent fMRI. Recent evidence from animal studies suggests that hyperactivity in the CA3 region of the hippocampus may underlie behavioral deficits in pattern separation in aged rats. Here, we report evidence that is consistent with findings from the animal studies. We found a behavioral impairment in pattern separation in a sample of healthy older adults compared with young controls. We also found a related increase in CA3/dentate gyrus activity levels during an fMRI contrast that stresses pattern separation abilities. In a detailed analysis of behavior, we also found that the pattern of impairment was consistent with the predictions of the animal model, where larger changes in the input (greater dissimilarity) were required in order for elderly adults to successfully encode new information as distinct from previously learned information. These findings are also consistent with recent fMRI and behavioral reports in healthy aging, and further suggest that a specific functional deficit in the CA3/dentate network contributes to memory difficulties with aging.


NeuroImage | 2010

High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment

Michael A. Yassa; Shauna M. Stark; Arnold Bakker; Marilyn S. Albert; Michela Gallagher; Craig E.L. Stark

Functional magnetic resonance imaging (fMRI) studies have observed hyperactivity in the hippocampal region in individuals with Mild Cognitive Impairment (MCI). However, the actual source of such hyperactivity is not well understood. Studies of aged rats observed similar hyperactive signals in the CA3 region of the hippocampus that correlated with spatial memory deficits and, in particular, with their ability to represent novel environments as being distinct from familiar ones (pattern separation). In this study, we tested the hypothesis that patients with amnestic MCI (aMCI) have deficits in pattern separation, along with hyperactive fMRI BOLD activity in the CA3 region of the hippocampus. We used high-resolution fMRI during a continuous recognition task designed to emphasize pattern separation. We conducted hippocampal subfield-level region of interest analyses to test for dysfunctional activity in aMCI patients. We found that patients showed impaired performance on trials that taxed their pattern separation abilities. We also observed hyperactive BOLD signals in the CA3/dentate and hypoactive signals in the entorhinal cortex during the separation condition. In a high-resolution morphometric analysis of hippocampal subfields, aMCI patients also had smaller CA3/dentate and CA1 volumes (no difference in the subiculum). The CA3/dentate region bilaterally also exhibited the largest shape deformations in aMCI patients, suggesting that this locus is affected early in the course of the disease. These findings suggest that structural and functional changes in the CA3/dentate region of the hippocampus contribute to the deficits in episodic memory that are observed in patients with aMCI. The functional hyperactivity may be evidence for a dysfunctional encoding mechanism, consistent with the predictions of computational models of hippocampal learning.


NeuroImage | 2009

A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe.

Michael A. Yassa; Craig E.L. Stark

Accurate cross-participant alignment within the medial temporal lobe (MTL) region is critical for fMRI studies of memory. However, traditional alignment approaches have been exceptionally poor at registering structures in this area due to significant inter-individual anatomic variability. In this study, we evaluated the performance of twelve registration approaches. Specifically, we extended several traditional approaches such as SPMs normalization and AFNIs 3dWarpDrive to improve the quality of alignment in the MTL region by using weighting masks or applying the transformations directly to ROI segmentations. In addition, we evaluated the performance of three fully deformable methods, DARTEL, Diffeomorphic Demons, and LDDMM that are effectively unconstrained by number of degrees of freedom. For each, we first assessed the methods ability to achieve optimal overlap between segmentations of subregions of the MTL across participants. Then we evaluated the smoothness of group average structural images aligned using each method to assess the blur that results when voxels of different tissue types are averaged together. In general, we found that when anatomical segmentation is possible, substantial improvement in registration accuracy can be gained in the MTL even with a small number of deformations. When segmentation is not possible, the fully deformable models provide some improvement over more traditional approaches and in a few cases even approach the performance of the ROI-based approaches. The best performance is achieved when both methods are combined. We note that these conclusions are not limited to the MTL and are easily extendable to other areas of the brain.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Age-related memory deficits linked to circuit-specific disruptions in the hippocampus

Michael A. Yassa; Aaron T. Mattfeld; Shauna M. Stark; Craig E.L. Stark

Converging data from rodents and humans have demonstrated an age-related decline in pattern separation abilities (the ability to discriminate among similar experiences). Several studies have proposed the dentate and CA3 subfields of the hippocampus as the potential locus of this change. Specifically, these studies identified rigidity in place cell remapping in similar environments in the CA3. We used high-resolution fMRI to examine activity profiles in the dentate gyrus and CA3 in young and older adults as stimulus similarity was incrementally varied. We report evidence for “representational rigidity” in older adults’ dentate/CA3 that is linked to behavioral discrimination deficits. Using ultrahigh-resolution diffusion imaging, we quantified both the integrity of the perforant path as well as dentate/CA3 dendritic changes and found that both were correlated with dentate/CA3 functional rigidity. These results highlight structural and functional alterations in the hippocampal network that predict age-related changes in memory function and present potential targets for intervention.


Learning & Memory | 2010

Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity

Joyce W. Lacy; Michael A. Yassa; Shauna M. Stark; L. Tugan Muftuler; Craig E.L. Stark

Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while monitoring CA1 and CA3/dentate for separation and completion-like signals using high-resolution fMRI. In the CA1, activity varied in a graded fashion in response to increases in the change in input. In contrast, the CA3/dentate showed a stepwise transfer function that was highly sensitive to small changes in input.


Neuropsychologia | 2013

A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment

Shauna M. Stark; Michael A. Yassa; Joyce W. Lacy; Craig E.L. Stark

Changes in memory performance are one of the hallmark symptoms of mild cognitive impairment and are affected by healthy aging as well. Pattern separation, which refers to the process of orthogonalizing overlapping inputs into distinct memory representations, may be a sensitive marker of these memory changes. Here, we describe a paradigm, the Behavioral Pattern Separation Task-Object Version (BPS-O task), which reveals age-related changes in pattern separation performance. Specifically, we report an age-related decline in pattern separation in healthy adults, ranging from ages 20 to 89. When we classify those individuals aged 60 and older into two groups, Aged Unimpaired (AU) and Aged Impaired (AI) based on their delayed word recall performance, we observe impairments in pattern separation performance in the Impaired group, but no overall impairment in recognition performance. In contrast, those individuals diagnosed with mild cognitive impairment demonstrate worse performance than age-matched controls in both pattern separation and recognition memory performance. Therefore, the BPS-O task provides a sensitive measure for observing changes in memory performance across the lifespan and may be useful for the early detection of memory impairments that may provide an early signal of later development to mild cognitive impairment.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo

Michael A. Yassa; L. Tugan Muftuler; Craig E.L. Stark

The perforant path (PP) undergoes synaptic changes in the course of aging and dementia. Previous studies attempting to assess the integrity of the PP in humans using diffusion tensor imaging (DTI) were limited by low resolution and the inability to identify PP fibers specifically. Here we present an application of DTI at ultrahigh submillimeter resolution that has allowed us to successfully identify diffusion signals unique to the PP and compare the intensity of these signals in a sample of young adults and older adults. We report direct evidence of age-related PP degradation in humans in vivo. We find no evidence of such loss in a control pathway, the alveus, suggesting that these findings are not evidence for a global decline. We also find no evidence for specific entorhinal gray matter atrophy. The extent of PP degradation correlated with performance on a word-list learning task sensitive to hippocampal deficits. We also show evidence for gray matter diffusion signals consistent with pyramidal dendrite orientation in the hippocampus and cerebral cortex. Ultrahigh-resolution microstructural DTI is a unique biomarker that can be used in combination with traditional structural and functional neuroimaging methods to enhance detection of Alzheimer disease in its earliest stages, test the effectiveness of new therapies, and monitor disease progression.


Psychiatry Research-neuroimaging | 2005

Regional white matter change in pre-symptomatic Huntington's disease : A diffusion tensor imaging study

Sarah Reading; Michael A. Yassa; Arnold Bakker; Adam C. Dziorny; Lisa Gourley; Venu Yallapragada; Adam Rosenblatt; Russell L. Margolis; Elizabeth H. Aylward; Jason Brandt; Susumu Mori; Peter C. M. van Zijl; Susan Spear Bassett; Christopher A. Ross

The pathology of Huntingtons disease (HD) is characterized by diffuse brain atrophy, with the most substantial neuronal loss occurring in the caudate and putamen. Recent evidence suggests that there may be more widespread neuronal degeneration with significant involvement of extrastriate structures, including white matter. In this study of pre-symptomatic carriers of the HD genetic mutation, we have used diffusion tensor imaging to examine the integrity and organization of white matter in a group of individuals who previously demonstrated abnormalities in response to a functional magnetic resonance imaging paradigm. Our results indicate that, before the onset of manifest HD, there are regional decreases in fractional anisotropy, indicating early white matter disorganization.


NeuroImage | 2015

Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol

Paul A. Yushkevich; Robert S.C. Amaral; Jean C. Augustinack; Andrew R. Bender; Jeffrey Bernstein; Marina Boccardi; Martina Bocchetta; Alison C. Burggren; Valerie A. Carr; M. Mallar Chakravarty; Gaël Chételat; Ana M. Daugherty; Lila Davachi; Song Lin Ding; Arne D. Ekstrom; Mirjam I. Geerlings; Abdul S. Hassan; Yushan Huang; J. Eugenio Iglesias; Renaud La Joie; Geoffrey A. Kerchner; Karen F. LaRocque; Laura A. Libby; Nikolai Malykhin; Susanne G. Mueller; Rosanna K. Olsen; Daniela J. Palombo; Mansi Bharat Parekh; John Pluta; Alison R. Preston

OBJECTIVE An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. METHOD MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. RESULTS The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. CONCLUSIONS The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.

Collaboration


Dive into the Michael A. Yassa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Spear Bassett

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Maria Ly

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge