Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael B. Boffa is active.

Publication


Featured researches published by Michael B. Boffa.


Journal of Biological Chemistry | 2015

Lipoprotein(a) Catabolism Is Regulated by Proprotein Convertase Subtilisin/Kexin Type 9 through the Low Density Lipoprotein Receptor

Rocco Romagnuolo; Corey A. Scipione; Michael B. Boffa; Santica M. Marcovina; Nabil G. Seidah; Marlys L. Koschinsky

Background: Plasma lipoprotein(a) (Lp(a)) levels can be reduced through proprotein convertase subtilisin/kexin type 9 (PCSK9) through an unknown mechanism. Results: Lp(a) catabolism in hepatoma cells and primary fibroblasts is inhibited by PCSK9 via the low density lipoprotein receptor (LDLR). Conclusion: LDLR mediates the effects of PCSK9 on Lp(a) internalization. Significance: Our results provide a mechanistic explanation for the effects of PCSK9 inhibitors on plasma Lp(a) levels. Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels.


Journal of Lipid Research | 2013

Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a)

Gregor Leibundgut; Corey A. Scipione; Huiyong Yin; Matthias Schneider; Michael B. Boffa; Simone R. Green; Xiaohong Yang; Edward A. Dennis; Joseph L. Witztum; Marlys L. Koschinsky; Sotirios Tsimikas

Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp55/57→Ala55/57 substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp57→Ala57 substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)’s pro-atherogenic potential.


Journal of Lipid Research | 2015

Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a)

Corey A. Scipione; Sera E. Sayegh; Rocco Romagnuolo; Sotirios Tsimikas; Santica M. Marcovina; Michael B. Boffa; Marlys L. Koschinsky

Elevated lipoprotein (a) [Lp(a)] levels are a causal risk factor for coronary heart disease. Accumulating evidence suggests that Lp(a) can stimulate cellular inflammatory responses through the kringle-containing apolipoprotein (a) [apo(a)] component. Here, we report that recombinant apo(a) containing 17 kringle (17K) IV domains elicits a dose-dependent increase in interleukin (IL)-8 mRNA and protein expression in THP-1 and U937 macrophages. This effect was blunted by mutation of the lysine binding site in apo(a) kringle IV type 10, which resulted in the loss of oxidized phospholipid (oxPL) on apo(a). Trypsin-digested 17K had the same stimulatory effect on IL-8 expression as intact apo(a), while enzymatic removal of oxPL from apo(a) significantly blunted this effect. Using siRNA to assess candidate receptors, we found that CD36 and TLR2 may play roles in apo(a)-mediated IL-8 stimulation. Downstream of these receptors, inhibitors of MAPKs, Jun N-terminal kinase and ERK1/2, abolished the effect of apo(a) on IL-8 gene expression. To assess the roles of downstream transcription factors, luciferase reporter gene experiments were conducted using an IL-8 promoter fragment. The apo(a)-induced expression of this reporter construct was eliminated by mutation of IL-8 promoter binding sites for either NF-κB or AP-1. Our results provide a mechanistic link between oxPL modification of apo(a) and stimulation of proinflammatory intracellular signaling pathways.


Journal of Thrombosis and Haemostasis | 2010

Secretion and antifibrinolytic function of thrombin‐activatable fibrinolysis inhibitor from human platelets

S. L. Schadinger; Joellen H. H. Lin; M. Garand; Michael B. Boffa

Summary.  Background: The thrombin‐activatable fibrinolysis inhibitor (TAFI) is a zymogen first characterized in human plasma that is activated through proteolytic cleavage by thrombin, thrombin in complex with thrombomodulin, or plasmin. Active TAFI attenuates fibrinolysis by removing C‐terminal lysine residues from partially degraded fibrin, thereby inhibiting a potent positive feedback loop in the fibrinolytic cascade. The existence of a separate pool of TAFI within platelets has been described. Objectives and Methods: We aimed to confirm the presence of TAFI in the medium of washed, thrombin‐stimulated platelets and to evaluate the characteristics of platelet TAFI by western blot analysis and with a quantitative assay for activated TAFI. We also assessed the ability of platelet TAFI to inhibit fibrinolysis in vitro, using a platelet‐rich thrombus lysis assay. Results: Our data are consistent with the presence of TAFI in the α‐granules of resting platelets. In contrast to previous reports, platelet TAFI is very similar in electrophoretic mobility to plasma‐derived TAFI. We also show, for the first time, that platelet‐derived TAFI is capable of attenuating platelet‐rich thrombus lysis in vitro independently of plasma TAFI. Moreover, we demonstrate additive effects on thrombolysis of platelet‐derived TAFI and TAFI present in plasma. Conclusions: Taken together, these observations indicate that the secretion of platelet‐derived TAFI can augment the concentrations of TAFI already present in plasma to enhance attenuation of the fibrinolytic cascade. This could be significant in regions of vascular damage or pathologic thrombosis, where activated platelets are known to accumulate.


Journal of Lipid Research | 2016

Lipoprotein(a): truly a direct prothrombotic factor in cardiovascular disease?

Michael B. Boffa; Marlys L. Koschinsky

Elevated plasma concentrations of lipoprotein (a) [Lp(a)] have been determined to be a causal risk factor for coronary heart disease, and may similarly play a role in other atherothrombotic disorders. Lp(a) consists of a lipoprotein moiety indistinguishable from LDL, as well as the plasminogen-related glycoprotein, apo(a). Therefore, the pathogenic role for Lp(a) has traditionally been considered to reflect a dual function of its similarity to LDL, causing atherosclerosis, and its similarity to plasminogen, causing thrombosis through inhibition of fibrinolysis. This postulate remains highly speculative, however, because it has been difficult to separate the prothrombotic/antifibrinolytic functions of Lp(a) from its proatherosclerotic functions. This review surveys the current landscape surrounding these issues: the biochemical basis for procoagulant and antifibrinolytic effects of Lp(a) is summarized and the evidence addressing the role of Lp(a) in both arterial and venous thrombosis is discussed. While elevated Lp(a) appears to be primarily predisposing to thrombotic events in the arterial tree, the fact that most of these are precipitated by underlying atherosclerosis continues to confound our understanding of the true pathogenic roles of Lp(a) and, therefore, the most appropriate therapeutic target through which to mitigate the harmful effects of this lipoprotein.


Endocrinology and Metabolism Clinics of North America | 2014

Lipoprotein(a): An Important Cardiovascular Risk Factor and a Clinical Conundrum

Marlys L. Koschinsky; Michael B. Boffa

Elevated plasma concentrations of lipoprotein(a) (Lp[a]) are an emerging risk factor for the development of coronary heart disease (CHD). Recent genetic and epidemiologic data have provided strong evidence for a causal role of Lp(a) in CHD. Despite these developments, which have attracted increasing interest from clinicians and basic scientists, many unanswered questions persist. The true pathogenic mechanism of Lp(a) remains a mystery. Significant uncertainty exists concerning the appropriate use of Lp(a) in the clinical setting. No therapeutic intervention remains that can specifically lower plasma Lp(a) concentrations, although the list of compounds that lower Lp(a) and LDL continues to expand.


Journal of Lipid Research | 2015

Mechanistic insights into lipoprotein(a)-induced interleukin-8 expression: a role for oxidized phospholipid modification of apolipoprotein(a)

Corey A. Scipione; Sera E. Sayegh; Rocco Romagnuolo; Sotirios Tsimikas; Santica M. Marcovina; Michael B. Boffa; Marlys L. Koschinsky

Elevated lipoprotein (a) [Lp(a)] levels are a causal risk factor for coronary heart disease. Accumulating evidence suggests that Lp(a) can stimulate cellular inflammatory responses through the kringle-containing apolipoprotein (a) [apo(a)] component. Here, we report that recombinant apo(a) containing 17 kringle (17K) IV domains elicits a dose-dependent increase in interleukin (IL)-8 mRNA and protein expression in THP-1 and U937 macrophages. This effect was blunted by mutation of the lysine binding site in apo(a) kringle IV type 10, which resulted in the loss of oxidized phospholipid (oxPL) on apo(a). Trypsin-digested 17K had the same stimulatory effect on IL-8 expression as intact apo(a), while enzymatic removal of oxPL from apo(a) significantly blunted this effect. Using siRNA to assess candidate receptors, we found that CD36 and TLR2 may play roles in apo(a)-mediated IL-8 stimulation. Downstream of these receptors, inhibitors of MAPKs, Jun N-terminal kinase and ERK1/2, abolished the effect of apo(a) on IL-8 gene expression. To assess the roles of downstream transcription factors, luciferase reporter gene experiments were conducted using an IL-8 promoter fragment. The apo(a)-induced expression of this reporter construct was eliminated by mutation of IL-8 promoter binding sites for either NF-κB or AP-1. Our results provide a mechanistic link between oxPL modification of apo(a) and stimulation of proinflammatory intracellular signaling pathways.


Current Atherosclerosis Reports | 2013

Update on Lipoprotein(a) as a Cardiovascular Risk Factor and Mediator

Michael B. Boffa; Marlys L. Koschinsky

Recent genetic studies have put the spotlight back onto lipoprotein(a) [Lp(a)] as a causal risk factor for coronary heart disease. However, there remain significant gaps in our knowledge with respect to how the Lp(a) particle is assembled, the route of its catabolism, and the mechanism(s) of Lp(a) pathogenicity. It has long been speculated that the effects of Lp(a) in the vasculature can be attributed to both its low-density lipoprotein moiety and the unique apolipoprotein(a) component, which is strikingly similar to the kringle-containing fibrinolytic zymogen plasminogen. However, the ability of Lp(a) to modulate either purely thrombotic or purely atherothrombotic processes in vivo remains unclear. The presence of oxidized phospholipid on Lp(a) may underlie many of the proatherosclerotic effects of Lp(a) that have been identified both in cell models and in animal models, and provides a possible avenue for identifying therapeutics aimed at mitigating the effects of Lp(a) in the vasculature. However, the beneficial effects of targeted Lp(a) therapeutics, designed to either lower Lp(a) concentrations or interfere with its effects, on cardiovascular outcomes remains to be determined.


Journal of Lipid Research | 2014

Inhibition of plasminogen activation by apo(a): role of carboxyl-terminal lysines and identification of inhibitory domains in apo(a).

Rocco Romagnuolo; Santica M. Marcovina; Michael B. Boffa; Marlys L. Koschinsky

Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.


Journal of Lipid Research | 2014

Inhibition of plasminogen activation by apolipoprotein(a): Role of carboxyl-terminal lysines and identification of inhibitory domains in apolipoprotein(a)

Rocco Romagnuolo; Santica M. Marcovina; Michael B. Boffa; Marlys L. Koschinsky

Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.

Collaboration


Dive into the Michael B. Boffa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald F. Watts

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge