Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael B. Bolger is active.

Publication


Featured researches published by Michael B. Bolger.


Advanced Drug Delivery Reviews | 2001

Predicting the impact of physiological and biochemical processes on oral drug bioavailability.

Balaji Agoram; Walter S. Woltosz; Michael B. Bolger

Recent advances in computational methods applied to the fields of drug delivery and biopharmaceutics will be reviewed with a focus on prediction of the impact of physiological and biochemical factors on simulation of gastrointestinal absorption and bioavailability. Our application of a gastrointestinal simulation for the prediction of oral drug absorption and bioavailability will be described. First, we collected literature data or we estimated biopharmaceutical properties by application of statistical methods to a set of 2D and 3D molecular descriptors. Second, we integrated the differential equations for an advanced compartmental absorption and transit (ACAT) model in order to determine the rate, extent, and approximate gastrointestinal location of drug liberation (for controlled release), dissolution, passive and carrier-mediated absorption, and saturable metabolism and efflux. We predict fraction absorbed, bioavailability, and C(p) vs. time profiles for common drugs and compare those estimates to literature data. We illustrate the simulated impact of physiological and biochemical processes on oral drug bioavailability.


Aaps Journal | 2009

Predicting pharmacokinetics of drugs using physiologically based modeling--application to food effects.

Neil Parrott; Viera Lukacova; G. Fraczkiewicz; Michael B. Bolger

Our knowledge of the major mechanisms underlying the effect of food on drug absorption allows reliable qualitative prediction based on biopharmaceutical properties, which can be assessed during the pre-clinical phase of drug discovery. Furthermore, several recent examples have shown that physiologically based absorption models incorporating biorelevant drug solubility measurements can provide quite accurate quantitative prediction of food effect. However, many molecules currently in development have distinctly sub-optimal biopharmaceutical properties, making the quantitative prediction of food effect for different formulations from in vitro data very challenging. If such drugs reach clinical development and show undesirable variability when dosed with food, improved formulation can help to reduce the food effect and carefully designed in vivo studies in dogs can be a useful guide to clinical formulation development. Even so, such in vivo studies provide limited throughput for screening, and food effects seen in dog cannot always be directly translated to human. This paper describes how physiologically based absorption modeling can play a role in the prediction of food effect by integrating the data generated during pre-clinical and clinical research and development. Such data include physicochemical and in vitro drug properties, biorelevant solubility and dissolution, and in vivo pre-clinical and clinical pharmacokinetic data. Some background to current physiological absorption models of human and dog is given, and refinements to models of in vivo drug solubility and dissolution are described. These are illustrated with examples using GastroPlus™ to simulate the food effect in dog and human for different formulations of two marketed drugs.


European Journal of Pharmaceutical Sciences | 2014

In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects.

Erik Sjögren; Bertil Abrahamsson; Patrick Augustijns; Dieter Becker; Michael B. Bolger; Marcus E. Brewster; Joachim Brouwers; Talia Flanagan; Matthew D. Harwood; Christian Heinen; René Holm; Hans-Paul Juretschke; Marlies Kubbinga; Anders Lindahl; Viera Lukacova; Uwe Münster; Sibylle Neuhoff; Mai Anh Nguyen; Achiel Van Peer; Christos Reppas; Amin Rostami Hodjegan; Christer Tannergren; Werner Weitschies; Clive G. Wilson; Patricia Zane; Hans Lennernäs; Peter Langguth

This review summarizes the current knowledge on anatomy and physiology of the human gastrointestinal tract in comparison with that of common laboratory animals (dog, pig, rat and mouse) with emphasis on in vivo methods for testing and prediction of oral dosage form performance. A wide range of factors and methods are considered in addition, such as imaging methods, perfusion models, models for predicting segmental/regional absorption, in vitro in vivo correlations as well as models to investigate the effects of excipients and the role of food on drug absorption. One goal of the authors was to clearly identify the gaps in todays knowledge in order to stimulate further work on refining the existing in vivo models and demonstrate their usefulness in drug formulation and product performance testing.


Aaps Journal | 2009

Simulations of the Nonlinear Dose Dependence for Substrates of Influx and Efflux Transporters in the Human Intestine

Michael B. Bolger; Viera Lukacova; Walter S. Woltosz

The purpose of this study was to develop simulation and modeling methods for the evaluation of pharmacokinetics when intestinal influx and efflux transporters are involved in gastrointestinal absorption. The advanced compartmental absorption and transit (ACAT) model as part of the computer program GastroPlus™ was used to simulate the absorption and pharmacokinetics of valacyclovir, gabapentin, and talinolol. Each of these drugs is a substrate for an influx or efflux transporter and all show nonlinear dose dependence within the normal therapeutic range. These simulations incorporated the experimentally derived gastrointestinal distributions of transporter expression levels for oligopeptide transporters PepT1 and HPT1 (valacyclovir); System L-amino acid transporter LAT2 and organic cation transporter OCTN1 (gabapentin); and organic anion transporter (OATP1A2) and P-glycoprotein (talinolol). By assuming a uniform distribution of oligopeptide transporter and by application of the in vitro Km value for valacyclovir, the simulations accurately reproduced the experimental nonlinear dose dependence. For gabapentin, LAT2 distribution produced simulation results that were much more accurate than OCTN1 distributions. For talinolol, an influx transporter distribution for OATP1A2 and the efflux transporter P-glycoprotein distributed with increasing expression in the distal small intestine produced the best results. The physiological characteristics of the small and large intestines used in the ACAT model were able to accurately account for the positional and temporal changes in concentration and carrier-mediated transport of the three drugs included in this study. The ACAT model reproduced the nonlinear dose dependence for each of these drugs.


European Journal of Pharmaceutical Sciences | 2014

Oral biopharmaceutics tools – Time for a new initiative – An introduction to the IMI project OrBiTo

Hans Lennernäs; Leon Aarons; Patrick Augustijns; Stefania Beato; Michael B. Bolger; Karl Box; Marcus E. Brewster; James Butler; Jennifer B. Dressman; René Holm; K Julia Frank; R Kendall; Peter Langguth; J Sydor; Anders Lindahl; Mark McAllister; Uwe Muenster; Anette Müllertz; Krista Ojala; Xavier Pepin; Christos Reppas; Amin Rostami-Hodjegan; Miriam Verwei; Werner Weitschies; Clive G. Wilson; C Karlsson; Bertil Abrahamsson

OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharmaceutics tools will be performed using active pharmaceutical ingredient (API), formulations and supporting datasets from industry partners. A combination of high quality in vitro or in silico characterizations of API and formulations will be integrated into physiologically based in silico biopharmaceutics models capturing the full complexity of GI drug absorption. This approach gives an unparalleled opportunity to initiate a transformational change in industrial research and development to achieve model-based pharmaceutical product development in accordance with the Quality by Design concept. Benefits include an accelerated and more efficient drug candidate selection, formulation development process, particularly for challenging projects such as low solubility molecules (BCS II and IV), enhanced and modified-release formulations, as well as allowing optimization of clinical product performance for patient benefit. In addition, the tools emerging from OrBiTo are expected to significantly reduce demand for animal experiments in the future as well as reducing the number of human bioequivalence studies required to bridge formulations after manufacturing or composition changes.


Aaps Journal | 2009

Prediction of Modified Release Pharmacokinetics and Pharmacodynamics from In Vitro, Immediate Release, and Intravenous Data

Viera Lukacova; Walter S. Woltosz; Michael B. Bolger

The aim of this study was to demonstrate the value of mechanistic simulations in gaining insight into the behaviors of modified release (MR) formulations in vivo and to use the properly calibrated models for prediction of pharmacokinetics (PK) and pharmacodynamics (PD). GastroPlusTM (Simulations Plus, Inc.) was used to fit mechanistic models for adinazolam and metoprolol that describe the absorption, PK, and PD after intravenous (i.v.) and immediate release (IR) oral (p.o.) administration. The fitted model for adinazolam was then used to predict the PD profile for a MR formulation and to design a new formulation with desired onset and duration of action. The fitted metoprolol model was used to gain insight and to explain the in vivo behaviors of MR formulations. For each drug, a single absorption/PK model was fitted that provided simulated plasma concentration–time profiles closely matching observed in vivo profiles across several different i.v. and p.o doses. Sedation score profiles of adinazolam were fitted with an indirect PD model. For metoprolol, the fitted absorption/PK model for IR p.o. doses was used to select in vitro dissolution conditions that best matched the in vivo release of MR doses. This model also explained differences in exposure after administration of MR formulations with different release rates. Mechanistic absorption/PK models allow for detailed descriptions of all processes affecting the two drugs’ bioavailability, including release/dissolution, absorption, and intestinal and hepatic first pass extraction. The insights gained can be used to design formulations that more effectively overcome identified problems.


Aaps Journal | 2008

Application of Gastrointestinal Simulation for Extensions for Biowaivers of Highly Permeable Compounds

Marija Tubic-Grozdanis; Michael B. Bolger; Peter Langguth

The goal of this study was to apply gastrointestinal simulation technology and integration of physiological parameters to predict biopharmaceutical drug classification. GastroPlus® was used with experimentally determined physicochemical and pharmacokinetic drug properties to simulate the absorption of several weak acid and weak base BCS class II compounds. Simulation of oral drug absorption given physicochemical drug properties and physicochemical parameters will aid justification of biowaivers for selected BCS class II compounds.


Molecular Pharmaceutics | 2012

In Silico Modeling for the Nonlinear Absorption Kinetics of UK-343,664: A P-gp and CYP3A4 Substrate

Bilal S. Abuasal; Michael B. Bolger; Don K. Walker; Amal Kaddoumi

The aim of this work was to extrapolate in vitro and preclinical animal data to simulate the pharmacokinetic parameters of UK-343,664, a P-glycoprotein (P-gp) and CYP3A4 substrate, in human. In addition, we aimed to develop a simulation model to demonstrate the involvement and the controversial complex interaction of intestinal P-gp and CYP3A4 in its nonlinear absorption, first-pass extraction, and pharmacokinetics using the advanced compartmental absorption and transit (ACAT) model. Finally, we aimed to compare the results predicted from the model to the reported findings in human clinical studies. In situ perfusion, allometric scaling, PBPK Rodger mechanistic approach, in vitro metabolism, and fitting to in vivo data were used to mechanistically explain the absorption, distribution and metabolism, respectively. GastroPlus was used to build the integrated simulation model in human for UK-343,664 to mechanistically explain the observed clinical data at 30, 100, 200, 400, and 800 mg oral doses. The measured in vitro value for CYP3A4 K(m) (465 μM) in rCYPs was converted to units of μg/mL, corrected for assumed microsomal binding (17.8%) and applied to all metabolic processes. The measured in vitro values of V(max) for CYP3A4 (38.9 pmol/min/pmol), 2C8, 2C9, 2C19, and 2D6 were used along with the in vitro CYP3A4 K(m) to simulate liver first pass extraction and systemic clearance. The measured in vitro values of V(max) for CYP3A4 and 2D6 were used along with the in vitro CYP3A4 K(m) to simulate gut first pass extraction. V(max) and K(m) values for P-gp were obtained by fitting to in vivo data and used to simulate gut efflux transport activity. Investigation of the interaction mechanism of P-gp and CYP3A4 in the intestine was achieved by comparing the influence of a virtual knockout of P-gp or gut metabolism on the fraction absorbed, fraction reaching the portal vein, and fraction metabolized in the gut. Comparison between simulation and in vivo results showed that the in silico simulation provided a mechanistic explanation of the observed nonlinear absorption kinetics of UK-343,664 in human following its administration in the range of 30-800 mg as oral solutions. The simulation results of the pharmacokinetic parameters, AUC and C(max), by GastroPlus were comparable with those observed in vivo. This simulation model is one possible mechanistic explanation of the observed in vivo data and suggests that the nonlinear dose dependence could be attributed to saturation of both the efflux transport by P-gp and the intestinal metabolism. However, the concentration ranges for either protein saturation did not overlap and resulted in much greater than dose proportional increases in AUC. At low doses, producing intraenterocyte concentrations below the fitted value of K(m) for P-gp, the influence of P-gp appears to be protective and results in a lower fraction of gut 3A4 metabolism. At higher doses, as P-gp becomes saturated the fraction of gut 3A4 extraction increases, and eventually at the highest doses, where 3A4 becomes saturated, the fraction of gut 3A4 extraction again decreases. Such a complex interpretation of this in vitro-in vivo extrapolation (IVIVE) is another example of the value and insight obtained by physiologically based absorption simulation.


Molecular Pharmaceutics | 2012

Provisional Biopharmaceutical Classification of Some Common Herbs Used in Western Medicine

Sarah Waldmann; May Almukainzi; Nadia Bou-Chacra; Gordon L. Amidon; Beom-Jin Lee; Jianfang Feng; Isadore Kanfer; Joan Zhong Zuo; Hai Wei; Michael B. Bolger; Raimar Löbenberg

The aim of this study was to classify some markers of common herbs used in Western medicine according to the Biopharmaceutical Classification System (BCS). The BCS is a scientific approach to classify drug substances based upon their intestinal permeability and their solubility, at the highest single dose used, within the physiologically relevant pH ranges. Known marker components of twelve herbs were chosen from the USP Dietary Supplement Compendium Monographs. Different BCS parameters such as intestinal permeability (P(eff)) and solubility (C(s)) were predicted using the ADMET Predictor, which is a software program to estimate biopharmaceutical relevant molecular descriptors. The dose number (D₀) was calculated when information from the literature was available to identify an upper dose for individual markers. In these cases the herbs were classified according to the traditional BCS parameters using P(eff) and D₀. When no upper dose could be determined, then the amount of a marker that is just soluble in 250 mL of water was calculated. This value, M(x), defines when a marker is changing from highly soluble to poorly soluble according to BCS criteria. This biopharmaceutically relevant value can be a useful tool for marker selection. The present study showed that a provisional BCS classification of herbs is possible but some special considerations need to be included into the classification strategy. The BCS classification can be used to choose appropriate quality control tests for products containing these markers. A provisional BCS classification of twelve common herbs and their 35 marker compounds is presented.


Pharmaceutical Research | 2009

Mutagenesis and Cysteine Scanning of Transmembrane Domain 10 of the Human Dipeptide Transporter

Liya Xu; Ian S. Haworth; Ashutosh A. Kulkarni; Michael B. Bolger; Daryl L. Davies

PurposeThe human dipeptide transporter (hPEPT1) facilitates transport of dipeptides and drugs from the intestine into the circulation. The role of transmembrane domain 10 (TMD10) of hPEPT1 in substrate translocation was investigated using cysteine-scanning mutagenesis with 2-Trimethylammonioethyl methanethiosulfonate (MTSET).MethodsEach amino acid in TMD10 was mutated individually to cysteine, and transport of [3H]Gly-Sar was evaluated with and without MTSET following transfection of each mutant in HEK293 cells. Similar localization and expression levels of wild type (WT) hPEPT1 and all mutants were confirmed by immunostaining and biotinylation followed by western blot analysis.ResultsE595C- and G594C-hPEPT1 showed negligible Gly-Sar uptake. E595D-hPEPT1 showed similar uptake to WT-hPEPT1, but E595K- and E595R-hPEPT1 did not transport Gly-Sar. Double mutations E595K/R282E and E595R/R282E did not restore uptake. G594A-hPEPT1 showed similar uptake to WT-hPEPT1, but G594V-hPEPT1 eliminated uptake. Y588C-hPEPT1 showed uptake of 20% that of WT-hPEPT1. MTSET modification supported a model of TMD10 with an amphipathic helix from I585 to V600 and increased solvent accessibility from T601 to F605.ConclusionsOur results suggest that G594 and E595 in TMD10 of hPEPT1 have key roles in substrate transport and that Y588 may have an important secondary mechanistic role.

Collaboration


Dive into the Michael B. Bolger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leon Aarons

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Diaz Brinton

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ronald W. Irwin

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge