Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael B. Ek is active.

Publication


Featured researches published by Michael B. Ek.


Bulletin of the American Meteorological Society | 2010

The NCEP Climate Forecast System Reanalysis

Suranjana Saha; Shrinivas Moorthi; Hua-Lu Pan; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; Robert Kistler; John S. Woollen; David Behringer; Haixia Liu; Diane Stokes; Robert Grumbine; George Gayno; Jun Wang; Yu-Tai Hou; Hui-Ya Chuang; Hann-Ming H. Juang; Joe Sela; Mark Iredell; Russ Treadon; Daryl T. Kleist; Paul Van Delst; Dennis Keyser; John Derber; Michael B. Ek; Jesse Meng; Helin Wei; Rongqian Yang; Stephen J. Lord

The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global oceans latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...


Bulletin of the American Meteorological Society | 2006

NORTH AMERICAN REGIONAL REANALYSIS

Fedor Mesinger; Geoff DiMego; Eugenia Kalnay; Kenneth E. Mitchell; Perry C. Shafran; Wesley Ebisuzaki; Dusan Jovic; John S. Woollen; Eric Rogers; Ernesto H. Berbery; Michael B. Ek; Yun Fan; Robert Grumbine; Wayne Higgins; Hong Li; Ying Lin; Geoff Manikin; D. D. Parrish; Wei Shi

In 1997, during the late stages of production of NCEP–NCAR Global Reanalysis (GR), exploration of a regional reanalysis project was suggested by the GR projects Advisory Committee, “particularly if the RDAS [Regional Data Assimilation System] is significantly better than the global reanalysis at capturing the regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.” Following a 6-yr development and production effort, NCEPs North American Regional Reanalysis (NARR) project was completed in 2004, and data are now available to the scientific community. Along with the use of the NCEP Eta model and its Data Assimilation System (at 32-km–45-layer resolution with 3-hourly output), the hallmarks of the NARR are the incorporation of hourly assimilation of precipitation, which leverages a comprehensive precipitation analysis effort, the use of a recent version of the Noah land surface model, and the use of numerous other datasets that are additional or improv...


Journal of Climate | 2014

The NCEP Climate Forecast System Version 2

Suranjana Saha; Shrinivas Moorthi; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; David Behringer; Yu-Tai Hou; Hui-Ya Chuang; Mark Iredell; Michael B. Ek; Jesse Meng; Rongqian Yang; Malaquias Mendez; Huug van den Dool; Qin Zhang; Wanqiu Wang; Mingyue Chen; Emily Becker

AbstractThe second version of the NCEP Climate Forecast System (CFSv2) was made operational at NCEP in March 2011. This version has upgrades to nearly all aspects of the data assimilation and forecast model components of the system. A coupled reanalysis was made over a 32-yr period (1979–2010), which provided the initial conditions to carry out a comprehensive reforecast over 29 years (1982–2010). This was done to obtain consistent and stable calibrations, as well as skill estimates for the operational subseasonal and seasonal predictions at NCEP with CFSv2. The operational implementation of the full system ensures a continuity of the climate record and provides a valuable up-to-date dataset to study many aspects of predictability on the seasonal and subseasonal scales. Evaluation of the reforecasts show that the CFSv2 increases the length of skillful MJO forecasts from 6 to 17 days (dramatically improving subseasonal forecasts), nearly doubles the skill of seasonal forecasts of 2-m temperatures over the ...


Journal of Geophysical Research | 1996

Modeling of land surface evaporation by four schemes and comparison with FIFE observations

Fei Chen; Kenneth E. Mitchell; John C. Schaake; Yongkang Xue; Hua-Lu Pan; Victor Koren; Qing Yun Duan; Michael B. Ek; Alan K. Betts

We tested four land surface parameterization schemes against long-term (5 months) area-averaged observations over the 15 km × 15 km First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area. This approach proved to be very beneficial to understanding the performance and limitations of different land surface models. These four surface models, embodying different complexities of the evaporation/hydrology treatment, included the traditional simple bucket model, the simple water balance (SWB) model, the Oregon State University (OSU) model, and the simplified Simple Biosphere (SSiB) model. The bucket model overestimated the evaporation during wet periods, and this resulted in unrealistically large negative sensible heat fluxes. The SWB model, despite its simple evaporation formulation, simulated well the evaporation during wet periods, but it tended to underestimate the evaporation during dry periods. Overall, the OSU model ably simulated the observed seasonal and diurnal variation in evaporation, soil moisture, sensible heat flux, and surface skin temperature. The more complex SSiB model performed similarly to the OSU model. A range of sensitivity experiments showed that some complexity in the canopy resistance scheme is important in reducing both the overestimation of evaporation during wet periods and underestimation during dry periods. Properly parameterizing not only the effect of soil moisture stress but also other canopy resistance factors, such as the vapor pressure deficit stress, is critical for canopy resistance evaluation. An overly simple canopy resistance that includes only soil moisture stress is unable to simulate observed surface evaporation during dry periods. Given a modestly comprehensive time-dependent canopy resistance treatment, a rather simple surface model such as the OSU model can provide good area-averaged surface heat fluxes for mesoscale atmospheric models.


Journal of Geophysical Research | 2011

The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements

Guo Yue Niu; Zong-Liang Yang; Kenneth E. Mitchell; Fei Chen; Michael B. Ek; Michael Barlage; Anil Kumar; Kevin W. Manning; Dev Niyogi; Enrique Rosero; Mukul Tewari; Youlong Xia

[1] This first paper of the two‐part series describes the objectives of the community efforts in improving the Noah land surface model (LSM), documents, through mathematical formulations, the augmented conceptual realism in biophysical and hydrological processes, and introduces a framework for multiple options to parameterize selected processes (Noah‐MP). The Noah‐MP’s performance is evaluated at various local sites using high temporal frequency data sets, and results show the advantages of using multiple optional schemes to interpret the differences in modeling simulations. The second paper focuses on ensemble evaluations with long‐term regional (basin) and global scale data sets. The enhanced conceptual realism includes (1) the vegetation canopy energy balance, (2) the layered snowpack, (3) frozen soil and infiltration, (4) soil moisture‐groundwater interaction and related runoff production, and (5) vegetation phenology. Sample local‐scale validations are conducted over the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site, the W3 catchment of Sleepers River, Vermont, and a French snow observation site. Noah‐MP shows apparent improvements in reproducing surface fluxes, skin temperature over dry periods, snow water equivalent (SWE), snow depth, and runoff over Noah LSM version 3.0. Noah‐MP improves the SWE simulations due to more accurate simulations of the diurnal variations of the snow skin temperature, which is critical for computing available energy for melting. Noah‐MP also improves the simulation of runoff peaks and timing by introducing a more permeable frozen soil and more accurate simulation of snowmelt. We also demonstrate that Noah‐MP is an effective research tool by which modeling results for a given process can be interpreted through multiple optional parameterization schemes in the same model framework.


Water Resources Research | 2011

Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

Eric F. Wood; Joshua K. Roundy; Tara J. Troy; L.P.H. van Beek; Marc F. P. Bierkens; Eleanor Blyth; Ad de Roo; Petra Döll; Michael B. Ek; James S. Famiglietti; David J. Gochis; Nick van de Giesen; Paul R. Houser; Stefan Kollet; Bernhard Lehner; Dennis P. Lettenmaier; Christa D. Peters-Lidard; Murugesu Sivapalan; Justin Sheffield; Andrew J. Wade; Paul Whitehead

Monitoring Earths terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earths terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.


Journal of Climate | 1997

Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes

T. H. C Hen; A. Henderson-Sellers; P. C. D. Milly; A. J. Pitman; A. C. M. Beljaars; Jan Polcher; Aaron Boone; Sam Chang; F. C Hen; C. E. Desborough; Robert E. Dickinson; Michael B. Ek; J. R. Garratt; N. Gedney; Jinwon Kim; Randal D. Koster; Eva Kowalczyk; K. Laval; J. Lean; Dennis P. Lettenmaier; Xu Liang; Kenneth E. Mitchell; Olga N. Nasonova; J. Noilhan; Alan Robock; Cynthia Rosenzweig; John C. Schaake; C. A. Schlosser; Y. S Hao; Andrey B. Shmakin

In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m22 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (6 10 Wm 2 2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models’ neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of


Journal of Applied Meteorology | 1984

The Influence of Atmospheric Stability on Potential Evaporation

Larry Mahrt; Michael B. Ek

Abstract The Penman relationship for potential evaporation is modified to simply include the influence of atmospheric stability on turbulent transport of water vapor. Explicit expressions for the stability-dependent, surface exchange coefficient developed by Louis are used. The diurnal variation of potential evaporation is computed for the stability-dependent and original Penman relationships using Wangara data. The influence of afternoon instability increases the aerodynamic term of the modified Penman relationship by 50% or more on days with moderate instability. However, the unmodified Penman relationship predicts values of daily potential evaporation close to that of the stability-dependent relationship. This agreement is partly due to compensating overestimation during nighttime hours. Errors due to use of daily-averaged variables are examined in detail by evaluating the nonlinear interactions between the diurnal variation of the variables in the Penman relationship. A simpler method for estimating t...


Global and Planetary Change | 1998

The Project for Intercomparison of Land-surface Parameterization / / Schemes PILPS Phase 2 c Red-Arkansas River basin experiment: 1. Experiment description and summary intercomparisons

Eric F. Wood; Dennis P. Lettenmaier; Xu Liang; Dag Lohmann; Aaron Boone; Sam Chang; Fei Chen; Yongjiu Dai; Robert E. Dickinson; Qingyun Duan; Michael B. Ek; Yeugeniy M. Gusev; Florence Habets; Parviz Irannejad; Randy Koster; Kenneth E. Mitchel; Olga N. Nasonova; J. Noilhan; John C. Schaake; Adam Schlosser; Yaping Shao; Andrey B. Shmakin; Diana Verseghy; Kirsten Warrach; Peter J. Wetzel; Yongkang Xue; Zong-Liang Yang; Qingcun Zeng

Abstract Sixteen land-surface schemes participating in the Project for the Intercomparison of Land-surface Schemes (PILPS) Phase 2(c) were run using 10 years (1979–1988) of forcing data for the Red–Arkansas River basins in the Southern Great Plains region of the United States. Forcing data (precipitation, incoming radiation and surface meteorology) and land-surface characteristics (soil and vegetation parameters) were provided to each of the participating schemes. Two groups of runs are presented. (1) Calibration–validation runs, using data from six small catchments distributed across the modeling domain. These runs were designed to test the ability of the schemes to transfer information about model parameters to other catchments and to the computational grid boxes. (2) Base-runs, using data for 1979–1988, designed to evaluate the ability of the schemes to reproduce measured energy and water fluxes over multiple seasonal cycles across a climatically diverse, continental-scale basin. All schemes completed the base-runs but five schemes chose not to calibrate. Observational data (from 1980–1986) including daily river flows and monthly basin total evaporation estimated through an atmospheric budget analysis, were used to evaluate model performance. In general, the results are consistent with earlier PILPS experiments in terms of differences among models in predicted water and energy fluxes. The mean annual net radiation varied between 80 and 105 W m −2 (excluding one model). The mean annual Bowen ratio varied from 0.52 to 1.73 (also excluding one model) as compared to the data-estimated value of 0.92. The run-off ratios varied from a low of 0.02 to a high of 0.41, as compared to an observed value of 0.15. In general, those schemes that did not calibrate performed worse, not only on the validation catchments, but also at the scale of the entire modeling domain. This suggests that further PILPS experiments on the value of calibration need to be carried out.


Journal of Hydrometeorology | 2004

Influence of Soil Moisture on Boundary Layer Cloud Development

Michael B. Ek; A.A.M. Holtslag

Abstract The daytime interaction of the land surface with the atmospheric boundary layer (ABL) is studied using a coupled one-dimensional (column) land surface–ABL model. This is an extension of earlier work that focused on modeling the ABL for 31 May 1978 at Cabauw, Netherlands; previously, it was found that coupled land–atmosphere tests using a simple land surface scheme did not accurately represent surface fluxes and coupled ABL development. Here, findings from that earlier study on ABL parameterization are utilized, and include a more sophisticated land surface scheme. This land surface scheme allows the land–atmosphere system to respond interactively with the ABL. Results indicate that in coupled land–atmosphere model runs, realistic daytime surface fluxes and atmospheric profiles are produced, even in the presence of ABL clouds (shallow cumulus). Subsequently, the role of soil moisture in the development of ABL clouds is explored in terms of a new relative humidity tendency equation at the ABL top w...

Collaboration


Dive into the Michael B. Ek's collaboration.

Top Co-Authors

Avatar

Helin Wei

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Kenneth E. Mitchell

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jesse Meng

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Mocko

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis P. Lettenmaier

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Fei Chen

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Lifeng Luo

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge