Michael B. Ross
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael B. Ross.
Advanced Materials | 2014
Kaylie L. Young; Michael B. Ross; Martin G. Blaber; Matthew Rycenga; Matthew R. Jones; Chuan Zhang; Andrew J. Senesi; Byeongdu Lee; George C. Schatz; Chad A. Mirkin
Abstract : Due to their potential for creating designer materials, the 3D assembly of nanoparticle building blocks into macroscopic structures with well-defined order and symmetry remains one of the most important challenges in materials science. [ 1 5 ] Furthermore, superlattices consisting of noble-metal nanoparticles have emerged as a new platform for the bottom-up design of plasmonic metamaterials. [ 6 8 ] The allure of optical metamaterials is that they provide a means for altering the temporal and spatial propagation of electromagnetic fields, resulting in materials that exhibit many properties that do not exist in nature. [ 9 13 ] With the vast array of nanostructures now synthetically realizable, computational methods play a crucial role in identifying the assemblies that exhibit the most exciting properties. [ 14 ] Once target assemblies are identified, the synthesis of nanometer-scale structures for use at optical and IR wavelengths must be taken into account. Many of the current methods to fabricate metamaterials in the optical range use serial lithographic-based approaches. [ 6 ] The challenge of controlled assembly into well-defined architectures has kept bottom-up methods that rely on the self-organization of colloidal metal nanoparticles from being fully explored for metamaterial applications. [ 8 ] DNA-mediated assembly of nanoparticles has the potential to help overcome this challenge. The predictability and programmability of DNA makes it a powerful tool for the rational assembly of plasmonic nanoparticles with tunable nearest-neighbor distances and symmetries. [ 1,15 18 ] Herein, we combine theory and experiment to study a new class of plasmonic superlattices first using electrodynamics simulations to identify that superlattices of spherical silver nanoparticles (Ag NPs) have the potential to exhibit emergent metamaterial properties, including epsilon-near-zero (ENZ) behavior, [ 13 ] and a region with an optically metallic response.
Nature Nanotechnology | 2015
Michael B. Ross; Jessie C. Ku; Victoria M. Vaccarezza; George C. Schatz; Chad A. Mirkin
The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure-function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.
Nano Letters | 2017
Yifan Li; Fan Cui; Michael B. Ross; Do Hyung Kim; Yuchun Sun; Peidong Yang
Copper is uniquely active for the electrocatalytic reduction of carbon dioxide (CO2) to products beyond carbon monoxide, such as methane (CH4) and ethylene (C2H4). Therefore, understanding selectivity trends for CO2 electrocatalysis on copper surfaces is critical for developing more efficient catalysts for CO2 conversion to higher order products. Herein, we investigate the electrocatalytic activity of ultrathin (diameter ∼20 nm) 5-fold twinned copper nanowires (Cu NWs) for CO2 reduction. These Cu NW catalysts were found to exhibit high CH4 selectivity over other carbon products, reaching 55% Faradaic efficiency (FE) at -1.25 V versus reversible hydrogen electrode while other products were produced with less than 5% FE. This selectivity was found to be sensitive to morphological changes in the nanowire catalyst observed over the course of electrolysis. Wrapping the wires with graphene oxide was found to be a successful strategy for preserving both the morphology and reaction selectivity of the Cu NWs. These results suggest that product selectivity on Cu NWs is highly dependent on morphological features and that hydrocarbon selectivity can be manipulated by structural evolution or the prevention thereof.
Nano Letters | 2015
Qing-Yuan Lin; Zhongyang Li; Keith A. Brown; Matthew N. O’Brien; Michael B. Ross; Yu Zhou; Serkan Butun; Peng-Cheng Chen; George C. Schatz; Vinayak P. Dravid; Koray Aydin; Chad A. Mirkin
Control of both photonic and plasmonic coupling in a single optical device represents a challenge due to the distinct length scales that must be manipulated. Here, we show that optical metasurfaces with such control can be constructed using an approach that combines top-down and bottom-up processes, wherein gold nanocubes are assembled into ordered arrays via DNA hybridization events onto a gold film decorated with DNA-binding regions defined using electron beam lithography. This approach enables one to systematically tune three critical architectural parameters: (1) anisotropic metal nanoparticle shape and size, (2) the distance between nanoparticles and a metal surface, and (3) the symmetry and spacing of particles. Importantly, these parameters allow for the independent control of two distinct optical modes, a gap mode between the particle and the surface and a lattice mode that originates from cooperative scattering of many particles in an array. Through reflectivity spectroscopy and finite-difference time-domain simulation, we find that these modes can be brought into resonance and coupled strongly. The high degree of synthetic control enables the systematic study of this coupling with respect to geometry, lattice symmetry, and particle shape, which together serve as a compelling example of how nanoparticle-based optics can be useful to realize advanced nanophotonic structures that hold implications for sensing, quantum plasmonics, and tunable absorbers.
Nature Communications | 2014
Michael B. Ross; Martin G. Blaber; George C. Schatz
The a priori ability to design electromagnetic wave propagation is crucial for the development of novel metamaterials. Incorporating plasmonic building blocks is of particular interest due to their ability to confine visible light. Here we explore the use of anisotropy in nanoscale and mesoscale plasmonic array architectures to produce noble metal-based metamaterials with unusual optical properties. We find that the combination of nanoscale and mesoscale anisotropy leads to rich opportunities for metamaterials throughout the visible and near-infrared. The low volume fraction (<5%) plasmonic metamaterials explored herein exhibit birefringence, a skin depth approaching that of pure metals for selected wavelengths, and directionally confined waves similar to those found in optical fibres. These data provide design principles with which the electromagnetic behaviour of plasmonic metamaterials can be tailored using high aspect ratio nanostructures that are accessible via a variety of synthesis and assembly methods.
Journal of the American Chemical Society | 2016
Michael J. Ashley; Matthew N. O’Brien; Konrad R. Hedderick; Jarad A. Mason; Michael B. Ross; Chad A. Mirkin
While the chemical composition of semiconducting metal halide perovskites can be precisely controlled in thin films for photovoltaic devices, the synthesis of perovskite nanostructures with tunable dimensions and composition has not been realized. Here, we describe the templated synthesis of uniform perovskite nanowires with controlled diameter (50-200 nm). Importantly, by providing three examples (CH3NH3PbI3, CH3NH3PbBr3, and Cs2SnI6), we show that this process is composition general and results in oriented nanowire arrays on transparent conductive substrates.
Nature Catalysis | 2018
Phil De Luna; Rafael Quintero-Bermudez; Cao-Thang Dinh; Michael B. Ross; Oleksandr S. Bushuyev; Petar Todorović; Tom Regier; Shana O. Kelley; Peidong Yang; Edward H. Sargent
The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol–gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO2 reduction conditions with time resolution. The sol–gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu+ at negative potentials. CO2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu+ oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm–2 (−1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200.Catalysts that can selectively reduce carbon dioxide to C2+ products are attractive for the generation of more complex and useful chemicals. Here, an electro-redeposited copper catalyst is shown to provide excellent selectivity and high current density for ethylene formation. Detailed characterization and theory link the performance to the catalyst morphology.
Journal of Physics D | 2015
Michael B. Ross; George C. Schatz
We explore localized surface plasmon resonances in small (5–30 nm radius) aluminum and silver nanoparticles using classical electrodynamics simulations, focusing on radiative (far-field scattering) effects and the unique characteristics of aluminum as a plasmonic material. In Al spheres, higher-order plasmon resonances (e.g. quadrupoles) are significant at smaller sizes (>15 nm) than in Ag spheres. Additionally, although the plasmon width is minimized at a radius of about 15 nm for both materials, the Al plasmon linewidth (~1.4 eV) for the dipole mode is much larger than that observed in Ag (~0.3 eV). The radiative contribution to damping dominates over non-radiative effects for small (5–20 nm) Al spheres (>95%) whereas for similar size Ag spheres damping is almost entirely attributed to the bulk dielectric function (non-radiative). For Al nanorods the linewidths can be narrowed by increasing aspect ratio such that for an aspect ratio of 4.5, the overall Al (0.75 eV) linewidth is reasonably close to that of the same size Ag rod (0.35 eV). This narrowing arises from frequency dispersion in the real part of the Al dielectric function, and is associated with a 65% (1.5 to 0.5 eV) decrease in the radiative contribution to the linewidth for Al. Concurrently, an increase in the non-radiative width occurs as the aspect ratio increases and the plasmon tunes to the red. This demonstrates that anisotropy can be used as a parameter for controlling Al plasmon dephasing where the composition of the plasmon linewidth (radiative or non-radiative) can be tailored with aspect ratio. Overall, these data suggest that localized surface plasmon resonance dephasing mechanisms in Al nanostructures are inherently different from those in the noble metals, which could allow for new applications of plasmonic materials, tunable plasmon lifetimes, and new physics to be observed.
Journal of the American Chemical Society | 2017
Michael B. Ross; Cao Thang Dinh; Yifan Li; Do Hyung Kim; Phil De Luna; Edward H. Sargent; Peidong Yang
Using renewable energy to recycle CO2 provides an opportunity to both reduce net CO2 emissions and synthesize fuels and chemical feedstocks. It is of central importance to design electrocatalysts that both are efficient and can access a tunable spectrum of products. Syngas, a mixture of carbon monoxide (CO) and hydrogen (H2), is an important chemical precursor that can be converted downstream into small molecules or larger hydrocarbons by fermentation or thermochemistry. Many processes that utilize syngas require different syngas compositions: we therefore pursued the rational design of a family of electrocatalysts that can be programmed to synthesize different designer syngas ratios. We utilize in situ surface-enhanced Raman spectroscopy and first-principles density functional theory calculations to develop a systematic picture of CO* binding on Cu-enriched Au surface model systems. Insights from these model systems are then translated to nanostructured electrocatalysts, whereby controlled Cu enrichment enables tunable syngas production while maintaining current densities greater than 20 mA/cm2.
Journal of the American Chemical Society | 2017
Shunzhi Wang; C. Michael McGuirk; Michael B. Ross; Shuya Wang; Peng-Cheng Chen; Hang Xing; Yuan Liu; Chad A. Mirkin
Metal–organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle–inorganic particle core–satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid–nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes.