Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael B. Stenger is active.

Publication


Featured researches published by Michael B. Stenger.


Aviation, Space, and Environmental Medicine | 2009

Compression Garments as Countermeasures to Orthostatic Intolerance

Steven H. Platts; Jennifer A. Tuxhorn; L. Christine Ribeiro; Michael B. Stenger; Stuart M. C. Lee; Janice V. Meck

INTRODUCTION All astronauts experience some degree of orthostatic intolerance following spaceflight, ranging from tachycardia to orthostatic hypotension and syncope. The purpose of this study was to evaluate the ability of two compression garments, the National Aeronautics and Space Administrations inflatable antigravity suit (AGS) and the Russian Federal Space Agencys non-inflatable compression garment (Kentavr), to prevent hypovolemia-related orthostatic intolerance. METHODS To mimic the plasma volume loss experienced by astronauts during spaceflight 19 healthy subjects received an intravenous dose of a diuretic, furosemide (0.5 mg x kg(-1)), and then consumed a low-salt diet for 36 h. Thereafter, subjects participated in a 15-min 80 degrees head-up tilt test wearing either the AGS (N = 9) or Kentavr (N = 10). Compression garments were used in the fashion recommended by the respective agencies, delivering approximately 78 mmHg and approximately 30 mmHg of compression in the AGS and Kentavr, respectively. Incidence of presyncope and hemodynamic responses during upright tilt were compared to a separate group of hypovolemic control subjects (N = 16). RESULTS Subjects wearing the AGS or Kentavr completed the full 15 min of upright tilt without incidence of orthostatic hypotension or presyncope. In contrast, only 9 control subjects (56%) were able to complete the tilt test. In addition, both types of compression garments maintained systolic blood pressure and significantly reduced tilt-induced tachycardia and reductions in stroke volume. CONCLUSIONS Although both garments successfully countered hypovolemia-induced orthostatic intolerance, the Kentavr provided protection by using lower levels of compression. Determining the optimal compression level required for protection of intolerance may improve crewmember comfort and decrease restrictions on physical activities after spaceflight.


Aviation, Space, and Environmental Medicine | 2010

Aerobic Exercise Deconditioning and Countermeasures During Bed Rest

Stuart M. C. Lee; Alan D. Moore; Meghan E. Everett; Michael B. Stenger; Steven H. Platts

Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.


Aviation, Space, and Environmental Medicine | 2010

Gradient compression garments as a countermeasure to post-spaceflight orthostatic intolerance.

Michael B. Stenger; Angela K. Brown; Stuart M. C. Lee; James P. Locke; Steven H. Platts

INTRODUCTION Post-spaceflight orthostatic intolerance affects approximately 30% of short-duration and 80% of long-duration crewmembers. While the current NASA antigravity suit is effective during Space Shuttle re-entry, it is not designed to be worn postflight and has several drawbacks. The purpose of this study was to evaluate the use of commercially available, thigh-high, gradient compression garments to prevent post-spaceflight orthostatic intolerance. METHODS Before spaceflight, five male Shuttle astronauts were fitted for compression garments. Postflight stand time, blood pressure, heart rate, stroke volume, cardiac output, and peripheral resistance during 10-min, 80 degrees head-up tilt test within 4 h of landing in these astronauts were retrospectively compared to a group of nine male astronauts not wearing the compression garments. RESULTS On landing day, three of nine non-countermeasure astronauts developed presyncopal symptoms and could not complete the test, while no countermeasure subjects became presyncopal. Compared to the non-countermeasure subjects, the countermeasure subjects had higher systolic blood pressure (116 +/- 3 vs. 134 +/- 2 mmHg), stroke volume (42 +/- 5 vs. 57 +/- 6 ml), and cardiac output (3.1 +/- 0.3 vs. 4.6 +/- 0.4 L). Heart rate was not different between groups. CONCLUSIONS In this small pilot study, the rate of presyncope in the non-countermeasure group was similar to that reported previously in subjects without a compression garment. In contrast, thigh-high graded compression garments mitigated the symptoms of orthostatic intolerance by improving stroke volume, cardiac output, and systolic blood pressure responses to standing.


Aerospace medicine and human performance | 2015

Orthostatic Intolerance After ISS and Space Shuttle Missions.

Stuart M. C. Lee; Alan H. Feiveson; Sydney P. Stein; Michael B. Stenger; Steven H. Platts

INTRODUCTION Cardiovascular deconditioning apparently progresses with flight duration, resulting in a greater incidence of orthostatic intolerance following long-duration missions. Therefore, we anticipated that the proportion of astronauts who could not complete an orthostatic tilt test (OTT) would be higher on landing day and the number of days to recover greater after International Space Station (ISS) than after Space Shuttle missions. METHODS There were 20 ISS and 65 Shuttle astronauts who participated in 10-min 80° head-up tilt tests 10 d before launch, on landing day (R+0), and 3 d after landing (R+3). Fishers Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the OTT. Cox regression was used to identify cardiovascular parameters associated with OTT completion and mixed model analysis was used to compare the change and recovery rates between groups. RESULTS The proportion of astronauts who completed the OTT on R+0 (2 of 6) was less in ISS than in Shuttle astronauts (52 of 65). On R+3, 13 of 15 and 19 of 19 of the ISS and Shuttle astronauts, respectively, completed the OTT. An index comprised of stroke volume and diastolic blood pressure provided a good prediction of OTT completion and was altered by spaceflight similarly for both astronaut groups, but recovery was slower in ISS than in Shuttle astronauts. CONCLUSIONS The proportion of ISS astronauts who could not complete the OTT on R+0 was greater and the recovery rate slower after ISS compared to Shuttle missions. Thus, mission planners and crew surgeons should anticipate the need to tailor scheduled activities and level of medical support to accommodate protracted recovery after long-duration microgravity exposures.


Journal of Applied Physiology | 2016

Left ventricular remodeling during and after 60 days of sedentary head-down bed rest.

Christian M. Westby; David S. Martin; Stuart M. C. Lee; Michael B. Stenger; Steven H. Platts

Short periods of weightlessness are associated with reduced stroke volume and left ventricular (LV) mass that appear rapidly and are thought to be largely dependent on plasma volume. The magnitude of these cardiac adaptations are even greater after prolonged periods of simulated weightlessness, but the time course during and the recovery from bed rest has not been previously described. We collected serial measures of plasma volume (PV, carbon monoxide rebreathing) and LV structure and function [tissue Doppler imaging, three-dimensional (3-D) and 2-D echocardiography] before, during, and up to 2 wk after 60 days of 6° head down tilt bed rest (HDTBR) in seven healthy subjects (four men, three women). By 60 days of HDTBR, PV was markedly reduced (2.7 ± 0.3 vs. 2.3 ± 0.3 liters,P< 0.001). Resting measures of LV volume and mass were ∼15% (P< 0.001) and ∼14% lower (P< 0.001), respectively, compared with pre-HDTBR values. After 3 days of reambulation, both PV and LV volumes were not different than pre-HDTBR values. However, LV mass did not recover with normalization of PV and remained 12 ± 4% lower than pre-bed rest values (P< 0.001). As previously reported, decreased PV and LV volume precede and likely contribute to cardiac atrophy during prolonged LV unloading. Although PV and LV volume recover rapidly after HDTBR, there is no concomitant normalization of LV mass. These results demonstrate that reduced LV mass in response to prolonged simulated weightlessness is not a simple effect of tissue dehydration, but rather true LV muscle atrophy that persists well into recovery.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Sex differences in blood pressure control during 6° head-down tilt bed rest

Natalia M. Arzeno; Michael B. Stenger; Stuart M. C. Lee; Robert Ploutz-Snyder; Steven H. Platts

Spaceflight-induced orthostatic intolerance has been studied for decades. Although ∼22% of the astronaut corps are women, most mechanistic studies use mostly male subjects, despite known sex differences in autonomic control and postflight orthostatic intolerance. We studied adrenergic, baroreflex, and autonomic indexes during continuous infusions of vasoactive drugs in men and women during a 60-day head-down bed rest. Volunteers were tested before bed rest (20 men and 10 women) and around day 30 (20 men and 10 women) and day 60 (16 men and 8 women) of bed rest. Three increasing doses of phenylephrine (PE) and sodium nitroprusside were infused for 10 min after an infusion of normal saline. A 20-min rest period separated the phenylephrine and sodium nitroprusside infusions. Autonomic activity was approximated by spectral indexes of heart rate and blood pressure variability, and baroreflex sensitivity was measured by the spontaneous baroreflex slope. Parasympathetic modulation and baroreflex sensitivity decreased with bed rest, with women experiencing a larger decrease in baroreflex sensitivity by day 30 than men. The sympathetic activation of men and parasympathetic responsiveness of women in blood pressure control during physiological stress were preserved throughout bed rest. During PE infusions, women experienced saturation of the R-R interval at high frequency, whereas men did not, revealing a sex difference in the parabolic relationship between high-frequency R-R interval, a measurement of respiratory sinus arrhythmia, and R-R interval. These sex differences in blood pressure control during simulated microgravity reveal the need to study sex differences in long-duration spaceflight to ensure the health and safety of the entire astronaut corps.


Aviation, Space, and Environmental Medicine | 2012

Virtual guidance as a tool to obtain diagnostic ultrasound for spaceflight and remote environments.

David S. Martin; Timothy L. Caine; Timothy Matz; Stuart M. C. Lee; Michael B. Stenger; Ashot E. Sargsyan; Steven H. Platts

INTRODUCTION With missions planned to travel greater distances from Earth at ranges that make real-time two-way communication impractical, astronauts will be required to perform autonomous medical diagnostic procedures during future exploration missions. Virtual guidance is a form of just-in-time training developed to allow novice ultrasound operators to acquire diagnostically-adequate images of clinically relevant anatomical structures using a prerecorded audio/visual tutorial viewed in real-time. METHODS Individuals without previous experience in ultrasound were recruited to perform carotid artery (N = 10) and ophthalmic (N = 9) ultrasound examinations using virtual guidance as their only training tool. In the carotid group, each untrained operator acquired two-dimensional, pulsed and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS Of the studies, 8 of the 10 carotid and 17 of 18 of the ophthalmic images (2 images collected per study) were judged to be diagnostically adequate. The quality of all but one of the ophthalmic images ranged from adequate to excellent. DISCUSSION Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by previously untrained operators with assistance from only an audio/video tutorial viewed in real time while scanning. This form of just-in-time training, which can be applied to other examinations, represents an opportunity to acquire important information for NASA flight surgeons and researchers when trained medical personnel are not available or when remote guidance is impractical.


Aviation, Space, and Environmental Medicine | 2013

Cardiovascular regulation during body unweighting by lower body positive pressure.

Joyce M. Evans; Lindsay Mohney; Siqi Wang; Rachel Moore; Samy-Claude Elayi; Michael B. Stenger; Fritz B. Moore; Charles F. Knapp

BACKGROUND We hypothesized that human cardiovascular responses to standing in reduced gravity environments, as on the Moon or Mars, could be modeled using a lower body positive pressure (LBPP) chamber. METHODS Heart rate, blood pressure, body segment fluid shifts, ECG, indexes of sympathetic, parasympathetic balance, and baroreflex control of the heart and periphery plus echocardiographic measures of cardiac function were recorded from seven men and seven women supine and standing at 100% (Earth), 40% (-Mars), and 20% (-Moon) bodyweights (BW). RESULTS The fluid shifted from the chest was greater when standing at 100% BW than at 20% and 40% BW, while fluid pooled in the abdomen was similar at all BWs. Compared to moving from supine to standing at 100% BW, moving to 20% and 40% BW resulted in smaller decreases in stroke volume and pulse pressure, smaller increases in heart rate and smaller decreases in parasympathetic control of heart rate, baroreflex slope, numbers of blood pressure ramps, and much reduced indexes of sympathetic drive to the heart and periphery. However, peripheral vascular resistance, systolic pressure, and baroreflex effectiveness were elevated during 20% and 40% BW, compared to supine and standing at 100% BW. DISCUSSION Standing at reduced bodyweight suppressed indexes of sympathetic control of heart rate and peripheral vasomotion. Regulatory responses indicated a combination of arterial and cardiopulmonary baroreflex control: mean heart rate, vasomotion, and baroreflex sensitivity appeared to be more under cardiopulmonary control while baroreflex effectiveness appeared to be driven more by the arterial baroreflex.


Aviation, Space, and Environmental Medicine | 2014

Cardiovascular models of simulated moon and mars gravities: head-up tilt vs. lower body unweighting.

Vladimir I. Kostas; Michael B. Stenger; Charles F. Knapp; Robert Shapiro; Siqi Wang; Andre Diedrich; Joyce M. Evans

INTRODUCTION In this study we compare two models [head-up tilt (HUT) vs. body unweighting using lower body positive pressure (LBPP)] to simulate Moon, Mars, and Earth gravities. A literature search did not reveal any comparisons of this type performed previously. We hypothesized that segmental fluid volume shifts (thorax, abdomen, upper and lower leg), cardiac output, and blood pressure (BP), heart rate (HR), and total peripheral resistance to standing would be similar in the LBPP and HUT models. METHODS There were 21 subjects who were studied while supine (simulation of spaceflight) and standing at 100% (Earth), 40% (Mars), and 20% (Moon) bodyweight produced by LBPP in Alter-G and while supine and tilted at 80 degrees, 20 degrees, and 10 degrees HUT (analogues of Earth, Mars, and Moon gravities, respectively). RESULTS Compared to supine, fluid shifts from the chest to the abdomen, increases in HR, and decreases in stroke volume were greater at 100% bodyweight than at reduced weights in response to both LBPP and HUT. Differences between the two models were found for systolic BP, diastolic BP, mean arterial BP, stroke volume, total peripheral resistance, and thorax and abdomen impedances, while HR, cardiac output, and upper and lower leg impedances were similar. CONCLUSIONS Bodyweight unloading via both LBPP and HUT resulted in cardiovascular changes similar to those anticipated in actual reduced gravity environments. The LBPP model/Alter-G has the advantage of providing an environment that allows dynamic activity at reduced bodyweight; however, the significant increase in blood pressures in the Alter-GC may favor the HUT model.


Aviation, Space, and Environmental Medicine | 2014

Simulations of gravitational stress on normovolemic and hypovolemic men and women

Qingguang Zhang; Charles F. Knapp; Michael B. Stenger; Abhijit Patwardhan; Samy C. Elayi; Siqi Wang; Vladimir I. Kostas; Joyce M. Evans

BACKGROUND Earth-based simulations of physiologic responses to space mission activities are needed to develop prospective countermeasures. To determine whether upright lower body positive pressure (LBPP) provides a suitable space mission simulation, we investigated the cardiovascular responses of normovolemic and hypovolemic men and women to supine and orthostatic stress induced by head-up tilt (HUT) and upright LBPP, representing standing in lunar, Martian, and Earth gravities. METHODS Six men and six women were tested in normovolemic and hypovolemic (furosemide, intravenous, 0.5 mg x kg(-1)) conditions. Continuous electrocardiogram, blood pressure, segmental bioimpedance, and stroke volume (echocardiography) were recorded supine and at lunar, Martian, and Earth gravities (10 degrees, 20 degrees, and 80 degrees HUT vs. 20%, 40%, and 100% bodyweight upright LBPP), respectively. Cardiovascular responses were assessed from mean values, spectral powers, and spontaneous baroreflex parameters. RESULTS Hypovolemia reduced plasma volume by approximately 10% and stroke volume by approximately 25% at supine, and increasing orthostatic stress resulted in further reductions. Upright LBPP induced more plasma volume losses at simulated lunar and Martian gravities compared with HUT, while both techniques induced comparable central hypovolemia at each stress. Cardiovascular responses to orthostatic stress were comparable between HUT and upright LBPP in both normovolemic and hypovolemic conditions; however, hypovolemic blood pressure was greater during standing at 100% bodyweight compared to 80 degree HUT due to a greater increase of total peripheral resistance. CONCLUSIONS The comparable cardiovascular response to HUT and upright LBPP support the use of upright LBPP as a potential model to simulate activity in lunar and Martian gravities.

Collaboration


Dive into the Michael B. Stenger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan H. Feiveson

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

Christian M. Westby

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajitkumar P. Mulavara

Universities Space Research Association

View shared research outputs
Researchain Logo
Decentralizing Knowledge