Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael B. VanElzakker is active.

Publication


Featured researches published by Michael B. VanElzakker.


Neurobiology of Learning and Memory | 2014

From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders.

Michael B. VanElzakker; M. Kathryn Dahlgren; F. Caroline Davis; Stacey J. Dubois; Lisa M. Shin

Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlovs dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders.


Frontiers in Integrative Neuroscience | 2012

Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies

Jasmeet P. Hayes; Michael B. VanElzakker; Lisa M. Shin

Posttraumatic stress disorder (PTSD) is a psychiatric syndrome that develops after exposure to terrifying and life-threatening events including warfare, motor-vehicle accidents, and physical and sexual assault. The emotional experience of psychological trauma can have long-term cognitive effects. The hallmark symptoms of PTSD involve alterations to cognitive processes such as memory, attention, planning, and problem solving, underscoring the detrimental impact that negative emotionality has on cognitive functioning. As such, an important challenge for PTSD researchers and treatment providers is to understand the dynamic interplay between emotion and cognition. Contemporary cognitive models of PTSD theorize that a preponderance of information processing resources are allocated toward threat detection and interpretation of innocuous stimuli as threatening, narrowing ones attentional focus at the expense of other cognitive operations. Decades of research have shown support for these cognitive models of PTSD using a variety of tasks and methodological approaches. The primary goal of this review is to summarize the latest neurocognitive and neuroimaging research of emotion-cognition interactions in PTSD. To directly assess the influence of emotion on cognition and vice versa, the studies reviewed employed challenge tasks that included both cognitive and emotional components. The findings provide evidence for memory and attention deficits in PTSD that are often associated with changes in functional brain activity. The results are reviewed to provide future directions for research that may direct better and more effective treatments for PTSD.


Frontiers in Behavioral Neuroscience | 2011

Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval

Michael B. VanElzakker; Phillip R. Zoladz; Vanessa M. Thompson; Collin R. Park; Joshua D. Halonen; Robert L. Spencer; David M. Diamond

We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.


Biology of Mood & Anxiety Disorders | 2013

Neuroimaging predictors of treatment response in anxiety disorders

Lisa M. Shin; F. Caroline Davis; Michael B. VanElzakker; Mary Kathryn Dahlgren; Stacey J. Dubois

Although several psychological and pharmacological treatment options are available for anxiety disorders, not all patients respond well to each option. Furthermore, given the relatively long duration of adequate treatment trials, finding a good treatment fit can take many months or longer. Thus, both clinicians and patients would benefit from the identification of objective pre-treatment measures that predict which patients will best respond to a given treatment. Recent studies have begun to use biological measures to help predict symptomatic change after treatment in anxiety disorders. In this review, we summarize studies that have used structural and functional neuroimaging measures to predict treatment response in obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), and social anxiety disorder (SAD). We note the limitations of the current studies and offer suggestions for future research. Although the literature is currently small, we conclude that pre-treatment neuroimaging measures do appear to predict treatment response in anxiety disorders, and future research will be needed to determine the relative predictive power of neuroimaging measures as compared to clinical and demographic measures.


Biology of Mood & Anxiety Disorders | 2013

Diminished rostral anterior cingulate cortex activation during trauma-unrelated emotional interference in PTSD

Reid Offringa; Kathryn Handwerger Brohawn; Lindsay K Staples; Stacey J. Dubois; Katherine C. Hughes; Danielle L. Pfaff; Michael B. VanElzakker; F. Caroline Davis; Lisa M. Shin

BackgroundPrevious research suggests that individuals with posttraumatic stress disorder (PTSD) preferentially attend to trauma-related emotional stimuli and have difficulty completing unrelated concurrent tasks. Compared to trauma-exposed control groups, individuals with PTSD also exhibit lower rostral anterior cingulate cortex (rACC) activation during tasks involving interference from trauma-related stimuli. However, it is not clear whether relatively diminished rACC activation in PTSD also occurs during interference tasks involving trauma-unrelated emotional stimuli. The present study employed functional magnetic resonance imaging (fMRI) and an interference task that involves emotional facial expressions and elicits rACC activation in healthy participants.FindingsWhile performing a trauma-unrelated emotional interference task, participants with PTSD (n=17) showed less rACC activation than trauma-exposed non-PTSD (TENP; n=18) participants. In the PTSD group, rACC activation was negatively correlated with the severity of re-experiencing symptoms. The two groups did not significantly differ on behavioral measures (i.e., response times and error rates).ConclusionsThese findings suggest that relatively diminished rACC activation in PTSD can be observed in interference tasks involving trauma-unrelated emotional stimuli, indicating a more general functional brain abnormality in this disorder. Future neuroimaging studies need not employ trauma-related stimuli in order to detect rACC abnormalities in PTSD.


American Journal of Psychiatry | 2016

Association of Resting Metabolism in the Fear Neural Network With Extinction Recall Activations and Clinical Measures in Trauma-Exposed Individuals.

Marie-France Marin; Huijin Song; Michael B. VanElzakker; Lindsay K. Staples-Bradley; Clas Linnman; Edward F. Pace-Schott; Natasha B. Lasko; Lisa M. Shin; Mohammed R. Milad

OBJECTIVE Exposure-based therapy, an effective treatment for posttraumatic stress disorder (PTSD), relies on extinction learning principles. In PTSD patients, dysfunctional patterns in the neural circuitry underlying fear extinction have been observed using resting-state or functional activation measures. It remains undetermined whether resting activity predicts activations during extinction recall or PTSD symptom severity. Moreover, it remains unclear whether trauma exposure per se affects resting activity in this circuitry. The authors employed a multimodal approach to examine the relationships among resting metabolism, clinical symptoms, and activations during extinction recall. METHOD Three cohorts were recruited: PTSD patients (N=24), trauma-exposed individuals with no PTSD (TENP) (N=20), and trauma-unexposed healthy comparison subjects (N=21). Participants underwent a resting positron emission tomography scan 4 days before a functional MRI fear conditioning and extinction paradigm. RESULTS Amygdala resting metabolism negatively correlated with clinical functioning (as measured by the Global Assessment of Functioning Scale) in the TENP group, and hippocampal resting metabolism negatively correlated with clinical functioning in the PTSD group. In the PTSD group, dorsal anterior cingulate cortex (dACC) resting metabolism positively correlated with PTSD symptom severity, and it predicted increased dACC activations but decreased hippocampal and ventromedial prefrontal cortex activations during extinction recall. The TENP group had lower amygdala resting metabolism compared with the PTSD and healthy comparison groups, and it exhibited lower hippocampus resting metabolism relative to the healthy comparison group. CONCLUSIONS Resting metabolism in the fear circuitry correlated with functioning, PTSD symptoms, and extinction recall activations, further supporting the relevance of this network to the pathophysiology of PTSD. The study findings also highlight the fact that chronic dysfunction in the amygdala and hippocampus is demonstrable in PTSD and other trauma-exposed individuals, even without exposure to an evocative stimulus.


Medical Hypotheses | 2013

Chronic fatigue syndrome from vagus nerve infection: a psychoneuroimmunological hypothesis.

Michael B. VanElzakker

Chronic fatigue syndrome (CFS) is an often-debilitating condition of unknown origin. There is a general consensus among CFS researchers that the symptoms seem to reflect an ongoing immune response, perhaps due to viral infection. Thus, most CFS research has focused upon trying to uncover that putative immune system dysfunction or specific pathogenic agent. However, no single causative agent has been found. In this speculative article, I describe a new hypothesis for the etiology of CFS: infection of the vagus nerve. When immune cells of otherwise healthy individuals detect any peripheral infection, they release proinflammatory cytokines. Chemoreceptors of the sensory vagus nerve detect these localized proinflammatory cytokines, and send a signal to the brain to initiate sickness behavior. Sickness behavior is an involuntary response that includes fatigue, fever, myalgia, depression, and other symptoms that overlap with CFS. The vagus nerve infection hypothesis of CFS contends that CFS symptoms are a pathologically exaggerated version of normal sickness behavior that can occur when sensory vagal ganglia or paraganglia are themselves infected with any virus or bacteria. Drawing upon relevant findings from the neuropathic pain literature, I explain how pathogen-activated glial cells can bombard the sensory vagus nerve with proinflammatory cytokines and other neuroexcitatory substances, initiating an exaggerated and intractable sickness behavior signal. According to this hypothesis, any pathogenic infection of the vagus nerve can cause CFS, which resolves the ongoing controversy about finding a single pathogen. The vagus nerve infection hypothesis offers testable hypotheses for researchers, animal models, and specific treatment strategies.


Neuroscience Letters | 2018

Nicotine exposure leads to deficits in differential cued fear conditioning in mice and humans: A potential role of the anterior cingulate cortex

Munir Gunes Kutlu; Marie-France Marin; Jessica M. Tumolo; Navneet Kaur; Michael B. VanElzakker; Lisa M. Shin; Thomas J. Gould

Stress and anxiety disorders such as posttraumatic stress disorder (PTSD) are characterized by disrupted safety learning. Tobacco smoking has been strongly implicated in stress and anxiety disorder symptomatology, both as a contributing factor and as a vulnerability factor. Rodent studies from our lab have recently shown that acute and chronic nicotine exposure disrupts safety learning. However, it is unknown if these effects of nicotine translate to humans. The present studies addressed this gap by administering a translational differential cued fear conditioning paradigm to both mice and humans. In mice, we found that chronic nicotine exposure reduced discrimination between a conditioned stimulus (CS) that signals for danger (CS+) and another CS that signals for safety (CS-) during both acquisition and testing. We then employed a similar differential cued fear conditioning paradigm in human smokers and non-smokers undergoing functional magnetic resonance imaging (fMRI). Smokers showed reduced CS+/CS- discrimination during fear conditioning compared to non-smokers. Furthermore, using fMRI, we found that subgenual and dorsal anterior cingulate cortex activations were lower in smokers than in non-smokers during differential cued fear conditioning. These results suggest a potential biological mechanism underlying a dysregulated ability to discriminate between danger and safety cues. Our results indicate a clear parallel between the effects of nicotine exposure on safety learning in mice and humans and therefore suggest that smoking might represent a risk factor for inability to process information related to danger and safety related cues.


Archive | 2018

The Neurocircuitry of Fear and PTSD

Michael B. VanElzakker; Lindsay K. Staples-Bradley; Lisa M. Shin

Research on the neurocircuitry of post-traumatic stress disorder (PTSD) has its roots in animal models of fear conditioning. In vivo imaging studies have revealed that the same basic circuitry involved in rodent contextual fear conditioning and extinction is dysfunctional in humans with PTSD. In this chapter, we briefly describe the paradigms and methods used in functional neuroimaging studies of PTSD and review functional neuroimaging findings in this disorder. In general, the amygdala is hyperresponsive, and the ventromedial prefrontal cortex (vmPFC) is hyporesponsive in PTSD, likely reflecting a failure of the vmPFC to inhibit fear responses. In addition, the dorsal anterior cingulate cortex (dACC) and insula are hyperresponsive. The hippocampus functions abnormally in PTSD, although the direction of this abnormality varies across studies. Hypotheses and implications regarding these functional deficits are discussed.


Learning & Memory | 2008

Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex

Michael B. VanElzakker; Rebecca D. Fevurly; Tressa Breindel; Robert L. Spencer

Collaboration


Dive into the Michael B. VanElzakker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert L. Spencer

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge