Michael Bagdasarian
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Bagdasarian.
Gene | 1993
Linda J. Overbye; Maria Sandkvist; Michael Bagdasarian
Pleiotropic transposon insertion mutants of Vibrio cholerae that are unable to secrete enterotoxin, HA/protease and chitinase through the outer membrane have been isolated. The gene, epsM, responsible for complementation of two of the Tn5 insertion mutations was sequenced. It encodes a putative cytoplasmic membrane protein of 18.5 kDa that exhibits similarity to proteins required for extracellular secretion of pullulanase, pectate lyase or elastase in other Gram-bacteria. It is present on a 15-kb DNA fragment from the V. cholerae genome, containing the epsE gene that was previously shown to be required for secretion of cholera toxin [Sandkvist et al., Gene 123 (1993) 81-86]. Partial reading frames flanking epsM also demonstrated similarity to genes required for extracellular secretion of pullulanase in Klebsiella oxytoca.
Gene | 1993
Maria Sandkvist; Victor Morales; Michael Bagdasarian
A gene essential for the secretion of cholera toxin from the periplasm of Vibrio cholerae into the extracellular medium has been isolated and its nucleotide sequence determined. It encodes a cytoplasmic protein of 56 kDa that exhibits a high degree of similarity to gene products required for extracellular protein secretion in several other Gram- organisms. Sequence similarities in its potential ATP-binding site suggest that the protein may act as an energy provider or signal transducer in the process of extracellular secretion.
Gene | 1995
L.O Michel; Maria Sandkvist; Michael Bagdasarian
The B-subunit pentamer(s) (EtxBp) of Escherichia coli heat-labile enterotoxin (LT) are secreted from Vibrio cholerae via the general secretion pathway (GSP), but remain periplasmic in E. coli. In order to determine if other Gram- bacteria were also able to secrete the ExtBp, the etxB gene, which encodes EtxB was introduced into different bacteria. Of the bacteria examined, most species of Vibrio and Aeromonas were able to secrete this protein through the outer membrane; other Gram- genera, including Erwinia, Klebsiella and Xanthomonas were not, even though they encode GSP genes homologous to those of V. cholerae. Thus, the ability to recognize the EtxBp as a secretable protein is confined to bacteria that were identified as being closely related to V. cholerae by examination of their 5S rRNA [MacDonell and Colwell, Syst. Appl. Microbiol. 6 (1985) 171-182].
Current Opinion in Biotechnology | 1996
Maria Sandkvist; Michael Bagdasarian
During the past few years, significant progress has been made towards our understanding of the molecular mechanisms governing the translocation of proteins through bacterial cell membranes. Successful attempts in promoting the secretion of recombinant proteins by employing this knowledge and by empirical efforts have been registered. However, a further in-depth understanding of membrane-translocation mechanisms is required before predictable manipulations of secretion systems can be made to secrete native recombinant proteins that are not naturally targeted to the extracellular compartment.
Molecular Microbiology | 2011
Miranda D. Gray; Michael Bagdasarian; Wim G. J. Hol; Maria Sandkvist
The type II secretion system is a multi‐protein complex that spans the cell envelope of Gram‐negative bacteria and promotes the secretion of proteins, including several virulence factors. This system is homologous to the type IV pilus biogenesis machinery and contains five proteins, EpsG‐K, termed the pseudopilins that are structurally homologous to the type IV pilins. The major pseudopilin EpsG has been proposed to form a pilus‐like structure in an energy‐dependent process that requires the ATPase, EpsE. A key remaining question is how the membrane‐bound EpsG interacts with the cytoplasmic ATPase, and if this is a direct or indirect interaction. Previous studies have established an interaction between the bitopic inner membrane protein EpsL and EpsE; therefore, in this study we used in vivo cross‐linking to test the hypothesis that EpsG interacts with EpsL. Our findings suggest that EpsL may function as a scaffold to link EpsG and EpsE and thereby transduce the energy generated by ATP hydrolysis to support secretion. The recent discovery of structural homology between EpsL and a protein in the type IV pilus system implies that this interaction may be conserved and represent an important functional interaction for both the type II secretion and type IV pilus systems.
Journal of Bacteriology | 2007
Shicheng Chen; Michael Bagdasarian; Michael G. Kaufman; Adam K. Bates; Edward D. Walker
Sequences that mediate the initiation of transcription in Flavobacterium species are not well known. The majority of identified Flavobacterium promoter elements show homology to those of other members of the phylum Bacteroidetes, but not of proteobacteria, and they function poorly in Escherichia coli. In order to analyze the Flavobacterium promoter structure systematically, we investigated the -33 consensus element, -7 consensus element, and spacer length of the Flavobacterium ompA promoter by measuring the effects of site-directed mutations on promoter activity. The nonconserved sequences in the spacer region and in regions close to the consensus motifs were randomized in order to determine their importance for promoter activity. Most of the base substitutions in these regions caused large decreases in promoter activity. The optimal -33/-7 motifs (TTTG/TANNTTTG) were identical to Bacteroides fragilis sigma(ABfr) consensus -33/-7 promoter elements but lacked similarity to the E. coli sigma(70) promoter elements. The length of the spacer separating the -33 and -7 motifs of the ompA promoter also had a pronounced effect on promoter activity, with 19 bp being optimal. In addition to the consensus promoter elements and spacer length, the GC content of the core promoter sequences had a pronounced effect on Flavobacterium promoter activity. This information was used to conduct a scan of the Flavobacterium johnsoniae and B. fragilis genomes for putative promoters, resulting in 188 hits in B. fragilis and 109 hits in F. johnsoniae.
Journal of Bacteriology | 2009
Aleksandra E. Sikora; Sinem Beyhan; Michael Bagdasarian; Fitnat H. Yildiz; Maria Sandkvist
The Vibrio cholerae type II secretion (T2S) machinery is a multiprotein complex that spans the cell envelope. When the T2S system is inactivated, cholera toxin and other exoproteins accumulate in the periplasmic compartment. Additionally, loss of secretion via the T2S system leads to a reduced growth rate, compromised outer membrane integrity, and induction of the extracytoplasmic stress factor RpoE (A. E. Sikora, S. R. Lybarger, and M. Sandkvist, J. Bacteriol. 189:8484-8495, 2007). In this study, gene expression profiling reveals that inactivation of the T2S system alters the expression of genes encoding cell envelope components and proteins involved in central metabolism, chemotaxis, motility, oxidative stress, and iron storage and acquisition. Consistent with the gene expression data, molecular and biochemical analyses indicate that the T2S mutants suffer from internal oxidative stress and increased levels of intracellular ferrous iron. By using a tolA mutant of V. cholerae that shares a similar compromised membrane phenotype but maintains a functional T2S machinery, we show that the formation of radical oxygen species, induction of oxidative stress, and changes in iron physiology are likely general responses to cell envelope damage and are not unique to T2S mutants. Finally, we demonstrate that disruption of the V. cholerae cell envelope by chemical treatment with polymyxin B similarly results in induction of the RpoE-mediated stress response, increased sensitivity to oxidants, and a change in iron metabolism. We propose that many types of extracytoplasmic stresses, caused either by genetic alterations of outer membrane constituents or by chemical or physical damage to the cell envelope, induce common signaling pathways that ultimately lead to internal oxidative stress and misregulation of iron homeostasis.
Applied and Environmental Microbiology | 2007
Shicheng Chen; Michael Bagdasarian; Michael G. Kaufman; Edward D. Walker
ABSTRACT We developed techniques for the genetic manipulation of Flavobacterium species and used it to characterize several promoters found in these bacteria. Our studies utilized Flavobacterium hibernum strain W22, an environmental strain we isolated from tree hole habitats of mosquito larvae. Plasmids from F. hibernum strain W22 were more efficiently (∼1,250-fold) transferred by electroporation into F. hibernum strain W22 than those isolated from Escherichia coli, thus indicating that an efficient restriction barrier exists between these species. The strong promoter, tac, functional in proteobacteria, did not function in Flavobacterium strains. Therefore, a promoter-trap plasmid, pSCH03, containing a promoterless gfpmut3 gene was constructed. A library of 9,000 clones containing chromosomal fragments of F. hibernum strain W22 in pSCH03 was screened for their ability to drive expression of the promoterless gfpmut3 gene. Twenty strong promoters were used for further study. The transcription start points were determined from seven promoter clones by the 5′ rapid amplification of cDNA ends technique. Promoter consensus sequences from Flavobacterium were identified as TAnnTTTG and TTG, where n is any nucleotide, centered approximately 7 and 33 bp upstream of the transcription start site, respectively. A putative novel ribosome binding site consensus sequence is proposed as TAAAA by aligning the 20-bp regions upstream of the translational start site in 25 genes. Our primary results demonstrate that at least some promoter and ribosome binding site motifs of Flavobacterium strains are unusual within the bacterial domain and suggest an early evolutionary divergence of this bacterial group. The techniques presented here allow for more detailed genetics-based studies and analyses of Flavobacterium species in the environment.
Bioresource Technology | 2013
Shicheng Chen; Michael G. Kaufman; Kerri L. Miazgowicz; Michael Bagdasarian; Edward D. Walker
A novel xylanase gene, xyn10A, was cloned from Flavobacterium johsoniae, overexpressed in a flavobacterial expression system, the recombinant enzyme purified by Ni-affinity chromatography, and enzyme structure and activity analyzed. Xyn10A was found to be a modular xylanase with an Fn3 accessory domain on its N-terminal and a catalytic region on the C-terminal. The optimum pH and temperature for Xyn10A was 8.0 and 30 °C, but Xyn10A retained 50% activity at 4 °C, indicating that Xyn10A is a cold-active xylanase. A Fn3-deletion xylanase had relative activity ca. 3.6-fold lower than the wild-type, indicating that Fn3 promotes xylanase activity. The Fn3 region also contributed to stability of the enzyme at elevated temperatures. However, Fn3 did not bind this xylanase to insoluble substrates. The enzyme hydrolyzed xylo-oligosaccharides into xylobiose, and xylose with xylobiose as the main product, confirming that Xyn10A is a strict endo-β-1,4-xylanase. Xyn10A also hydrolyzed birchwood and beechwood xylan to yield mainly xylose, xylobiose and xylotriose.
Journal of Bacteriology | 2011
Timothy G. Strozen; Heather Stanley; Yuqi Gu; Jessica Boyd; Michael Bagdasarian; Maria Sandkvist; S. Peter Howard
The type II secretion system (T2SS) functions as a transport mechanism to translocate proteins from the periplasm to the extracellular environment. The ExeA homologue in Aeromonas hydrophila, GspA(Ah), is an ATPase that interacts with peptidoglycan and forms an inner membrane complex with the ExeB homologue (GspB(Ah)). The complex may be required to generate space in the peptidoglycan mesh that is necessary for the transport and assembly of the megadalton-sized ExeD homologue (GspD(Ah)) secretin multimer in the outer membrane. In this study, the requirement for GspAB in the assembly of the T2SS secretin in Aeromonas and Vibrio species was investigated. We have demonstrated a requirement for GspAB in T2SS assembly in Aeromonas salmonicida, similar to that previously observed in A. hydrophila. In the Vibrionaceae species Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus, gspA mutations significantly decreased assembly of the secretin multimer but had minimal effects on the secretion of T2SS substrates. The lack of effect on secretion of the mutant of gspA of V. cholerae (gspA(Vc)) was explained by the finding that native secretin expression greatly exceeds the level needed for efficient secretion in V. cholerae. In cross-complementation experiments, secretin assembly and secretion in an A. hydrophila gspA mutant were partially restored by the expression of GspAB from V. cholerae in trans, further suggesting that GspAB(Vc) performs the same role in Vibrio species as GspAB(Ah) does in the aeromonads. These results indicate that the GspAB complex is functional in the assembly of the secretin in Vibrio species but that a redundancy of GspAB function may exist in this genus.