Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Baitinger is active.

Publication


Featured researches published by Michael Baitinger.


Nature | 2006

A guest-free germanium clathrate

Arnold M. Guloy; Reiner Ramlau; Zhongjia Tang; Walter Schnelle; Michael Baitinger; Yuri Grin

The challenges associated with synthesizing expanded semiconductor frameworks with cage-like crystal structures continue to be of interest. Filled low-density germanium and silicon framework structures have distinct properties that address important issues in thermoelectric phonon glass–electron crystals, superconductivity and the possibility of Kondo insulators. Interest in empty framework structures of silicon and germanium is motivated by their predicted wide optical bandgaps of the same magnitude as quantum dots and porous silicon, making them and their alloys promising materials for silicon-based optoelectronic devices. Although almost-empty Na1-xSi136 has already been reported, the synthesis of guest-free germanium clathrate has so far been unsuccessful. Here we report the high-yield synthesis and characteristics of germanium with the empty clathrate-II structure through the oxidation of Zintl anions in ionic liquids under ambient conditions. The approach demonstrates the potential of ionic liquids as media for the reactions of polar intermetallic phases.


Inorganic Chemistry | 2011

Atomic Interactions in the p-Type Clathrate I Ba8Au5.3Ge40.7

Hui Zhang; Horst Borrmann; N. Oeschler; Christophe Candolfi; Walter Schnelle; Marcus Schmidt; Ulrich Burkhardt; Michael Baitinger; Jing-Tai Zhao; Yuri Grin

Single crystals of Ba(8)Au(5.3)Ge(40.7) [space group Pm(3)n (No. 223), a = 10.79891(8) Å] were prepared by a Bridgman technique. The crystal structure refinement based on single-crystal X-ray diffraction data does not reveal any vacancies in the Au/Ge framework or in the cages. In addition to the ionic bonding between Ba and the anionic framework, a direct interaction between Ba and Au atoms was identified in Ba(8)Au(5.3)Ge(40.7) by applying the electron localizability indicator. As expected by the chemical-bonding picture, Ba(8)Au(5.3)Ge(40.7) is a diamagnet and shows p-type electrical conductivity with a hole carrier concentration of 7.14 × 10(19) cm(-3) at 300 K and very low lattice thermal conductivity of ≈0.6 W m(-1) K(-1) at 500 K. The thermoelectric figure of merit ZT of single crystals of Ba(8)Au(5.3)Ge(40.7) attains 0.3 at 511 K and reaches 0.9 at 680 K in a polycrystalline sample of closely similar composition. This opens up an opportunity for tuning of the thermoelectric properties of materials in the Ba-Au-Ge clathrate system by changing the chemical composition.


Dalton Transactions | 2010

Atomic ordering and thermoelectric properties of the n-type clathrate Ba8Ni3.5Ge42.1□0.4

L. T. K. Nguyen; Umut Aydemir; Michael Baitinger; E. Bauer; Horst Borrmann; Ulrich Burkhardt; J. Custers; A. Haghighirad; R. Höfler; K. D. Luther; F. Ritter; W. Assmus; Yu. Grin; S. Paschen

Single crystals of the type-I clathrate Ba(8)Ni(3.5)Ge(42.1)square(0.4) (space group Pm3n, no. 223, a = 10.798(2) A, l = 30 mm, slashed circle = 8 mm) were grown from the melt using the Bridgman technique. Their composition, determined by microprobe analysis, reveals a distinctly lower Ni content than previously reported for the lower limit (x = 5.4) of the homogeneity range of the clathrate-I phase Ba(8)Ni(x)Ge(46-x). From single crystal X-ray diffraction data we introduce a crystal structure model that takes point defects (vacancies) square in the Ge network into account. It reveals that both Ni and square accumulate at a single site (6c) and that, as a consequence, the Ge network distorts considerably. Ba(8)Ni(3.5)Ge(42.1)square(0.4) shows metal-like behaviour (drho/dT > 0) albeit with high resistivity at room temperature (rho(300 K) approximately 1 mOmega cm). Together with the low charge carrier concentration of 2.3 e(-)/unit cell at 300 K this is typical of a degenerate semiconductor. The lattice thermal conductivity is distinctly smaller than that of Ba(8)Ge(43)square(3), where the vacancies partially order, and smaller than those of Ba-Ni-Ge type-I clathrates without vacancies, suggesting that disordered vacancies efficiently scatter heat-transporting phonons. We provide evidence that the maximum value of the thermoelectric figure of merit reached in Ba(8)Ni(3.5)Ge(42.1)square(0.4), ZT(680 K) congruent with 0.21, can be further improved by adjusting the charge carrier concentration.


Journal of the American Chemical Society | 2009

Preparation and Crystal Growth of Na24Si136

Matt Beekman; Michael Baitinger; Horst Borrmann; Walter Schnelle; Katrin Meier; George S. Nolas; Yuri Grin

The synthesis and single crystal growth of clathrate-II Na(24)Si(136) is performed in one step applying the spark plasma treatment to the precursor Na(4)Si(4). The reported results demonstrate a new route to intermetallic compounds facilitated by the electric field and current. SPS is revealed to offer significant opportunities as a novel preparatory method for synthesis and crystal growth of solid state materials.


Dalton Transactions | 2010

Crystal structure and transport properties of Ba8Ge43□3

Umut Aydemir; Christophe Candolfi; Horst Borrmann; Michael Baitinger; Alim Ormeci; Wilder Carrillo-Cabrera; C. Chubilleau; B. Lenoir; A. Dauscher; N. Oeschler; F. Steglich; Yu. Grin

The single phase clathrate-I Ba(8)Ge(43)square(3) (space group Ia3d (no. 230), a = 21.307(1) A) was synthesized by quenching the melt between cold steel plates. Specimens for physical property measurements were characterized by microstructure analysis and X-ray diffraction on polycrystalline samples as well as single crystals. Transport properties including thermopower, electrical resistivity, thermal conductivity and specific heat were investigated in a temperature range of 2-673 K. The electrical resistivity exhibits a metal-like temperature dependence below 300 K turning into a semiconductor-like behaviour above 300 K. The analysis of the specific heat at low temperature indicates a finite density of states at the Fermi level, thus corroborating the metallic character below 300 K. The temperature dependence of the specific heat was modelled assuming Einstein-like localized vibrations of Ba atoms inside the cages of the Ge framework. A conventional crystal-like behaviour of the thermal conductivity with a low lattice contribution (kappa(l)(300 K) = 2.7 W m(-1) K(-1)) has been evidenced.


Journal of Physics: Condensed Matter | 2014

High temperature thermoelectric properties of the type-I clathrate Ba8NixGe46-x-ysquarey

Umut Aydemir; Christophe Candolfi; Alim Ormeci; Michael Baitinger; N. Oeschler; F. Steglich; Yu. Grin

Polycrystalline samples of the type-I clathrate Ba(8)Ni(x)Ge(46-x-y)□(y) were synthesized for 0.2 ⩽ x ⩽ 3.5 by melt quenching and for 3.5<x ⩽ 6.0 by melting with subsequent annealing at 700 °C. The maximum Ni content in the clathrate framework at this temperature was found to be x ≈ 4.2 atoms per unit cell. Thermoelectric and thermodynamic properties of the type-I clathrate were investigated from 300 to 700 K by means of electrical resistivity, thermopower, thermal conductivity and specific heat measurements. As the Ni content increases, the electronic properties gradually evolve from a metallic character (x < 3.5) towards a highly doped semiconducting state (x ⩾ 3.5). Below x ≈ 4.0 transport is dominated by electrons, while further addition of Ni (x ≈ 4.2) switches the electrical conduction to p-type. Maximum value of the dimensionless thermoelectric figure of merit ZT ≈ 0.2 was achieved at 500 K and 650 K for x ≈ 2.0 and x ≈ 3.8, respectively.


Inorganic Chemistry | 2011

Introducing a Magnetic Guest to a Tetrel-Free Clathrate: Synthesis, Structure, and Properties of EuxBa8–xCu16P30 (0 ≤ x ≤ 1.5)

Kirill Kovnir; Ulrike Stockert; Sergij Budnyk; Yurii Prots; Michael Baitinger; S. Paschen; Andrei V. Shevelkov; Yuri Grin

The europium-containing clathrate-I Eu(x)Ba(8-x)Cu(16)P(30) was synthesized from the elements. Powder X-ray diffraction in combination with energy dispersive X-ray absorption spectroscopy (EDXS) and metallographic studies showed the homogeneity range with x ≤ 1.5. Determination of the crystal structure confirmed the presence of an orthorhombic superstructure of clathrate-I and revealed that Eu atoms exclusively resided in small pentagonal-dodecahedral cages. Magnetic measurements together with X-ray absorption spectroscopy are consistent with a 4f(7) (Eu(2+)) ground state for Eu(x)Ba(8-x)Cu(16)P(30). Below 3 K the Eu moments order antiferromagnetically. Resistivity measurements revealed metallic behavior of the investigated clathrate, in line with the composition deviating from the Zintl counting scheme. Local vibrations of the guest atoms inside the cages are analyzed with the help of specific heat investigations.


Angewandte Chemie | 1998

The Cluster Anion Si94

Hans Georg von Schnering; Mehmet Somer; Martin Kaupp; Wilder Carrillo-Cabrera; Michael Baitinger; Andre Schmeding; Yuri Grin

Solely on the basis of Raman spectra and quantum chemical calculations, the previously unknown cluster anion Si94- (structure shown) was characterized and its structure determined. The anion is formed as a component of solid phases by the thermal decomposition of alkali metal monosilicides.


Inorganic Chemistry | 2010

Framework Contraction in Na-Stuffed Si(cF136)

Matt Beekman; Emmanuel Nenghabi; Koushik Biswas; Charles W. Myles; Michael Baitinger; Yuri Grin; George S. Nolas

Systematic crystal structure refinements from powder X-ray diffraction data as well as density functional theory calculations demonstrate that the silicon clathrate II Si(cF136) exhibits a lattice contraction as Na is introduced solely into the Si(28) cages. When the Si(20) cages, in addition, begin to be filled with Na, a contrasting lattice expansion results. The nonmonotonic structural response to filling is an indication of markedly dissimilar guest-framework interactions for Na@Si(20) and Na@Si(28).


Journal of Chemical Physics | 2010

Thermoelectric properties of YbxEu1−xCd2Sb2

Hui Zhang; Liang Fang; Mei-Bo Tang; Zhen-Yong Man; Hailong Chen; Xiaozhen Yang; Michael Baitinger; Yu. Grin; Jing-Tai Zhao

The thermoelectric performance of EuCd(2)Sb(2) and YbCd(2)Sb(2) was improved by mixed cation occupation. The composition, structure, and thermoelectric properties of Yb(x)Eu(1-x)Cd(2)Sb(2) (x=0, 0.5, 0.75, and 1) have been investigated. Polycrystalline samples are prepared by direct reaction of the elements. Thermoelectric properties were investigated after densification of the materials by spark plasma sintering. Yb(x)Eu(1-x)Cd(2)Sb(2) crystallizes in the P3m1 space group. The lattice parameters increase with the europium content. These materials show low electrical resistivity, high Seebeck coefficient, and low thermal conductivity together with high carrier concentration and high carrier mobility. ZT values of 0.88 and 0.97 are obtained for Yb(0.5)Eu(0.5)Cd(2)Sb(2) and Yb(0.75)Eu(0.25)Cd(2)Sb(2) at 650 K, respectively.

Collaboration


Dive into the Michael Baitinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge