Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Barbour is active.

Publication


Featured researches published by Michael Barbour.


Annals of Biomedical Engineering | 2014

Accuracy of Computational Cerebral Aneurysm Hemodynamics Using Patient-Specific Endovascular Measurements

Patrick M. McGah; Michael R. Levitt; Michael Barbour; Ryan P. Morton; John D. Nerva; Pierre D. Mourad; Danial K. Hallam; Laligam N. Sekhar; Louis J. Kim; Alberto Aliseda

Computational hemodynamic simulations of cerebral aneurysms have traditionally relied on stereotypical boundary conditions (such as blood flow velocity and blood pressure) derived from published values as patient-specific measurements are unavailable or difficult to collect. However, controversy persists over the necessity of incorporating such patient-specific conditions into computational analyses. We perform simulations using both endovascularly-derived patient-specific and typical literature-derived inflow and outflow boundary conditions. Detailed three-dimensional anatomical models of the cerebral vasculature are developed from rotational angiography data, and blood flow velocity and pressure are measured in situ by a dual-sensor pressure and velocity endovascular guidewire at multiple peri-aneurysmal locations in 10 unruptured cerebral aneurysms. These measurements are used to define inflow and outflow boundary conditions for computational hemodynamic models of the aneurysms. The additional in situ measurements which are not prescribed in the simulation are then used to assess the accuracy of the simulated flow velocity and pressure drop. Simulated velocities using patient-specific boundary conditions show good agreement with the guidewire measurements at measurement locations inside the domain, with no bias in the agreement and a random scatter of ≈25%. Simulated velocities using the simplified, literature-derived values show a systematic bias and over-predicted velocity by ≈30% with a random scatter of ≈40%. Computational hemodynamics using endovascularly measured patient-specific boundary conditions have the potential to improve treatment predictions as they provide more accurate and precise results of the aneurysmal hemodynamics than those based on commonly accepted reference values for boundary conditions.


Journal of NeuroInterventional Surgery | 2017

Computational fluid dynamics of cerebral aneurysm coiling using high-resolution and high-energy synchrotron X-ray microtomography: comparison with the homogeneous porous medium approach

Michael R. Levitt; Michael Barbour; Sabine Rolland du Roscoat; Christian Geindreau; Venkat Keshav Chivukula; Patrick M. McGah; John D. Nerva; Ryan P. Morton; Louis J. Kim; Alberto Aliseda

Background Computational modeling of intracranial aneurysms provides insights into the influence of hemodynamics on aneurysm growth, rupture, and treatment outcome. Standard modeling of coiled aneurysms simplifies the complex geometry of the coil mass into a homogeneous porous medium that fills the aneurysmal sac. We compare hemodynamics of coiled aneurysms modeled from high-resolution imaging with those from the same aneurysms modeled following the standard technique, in an effort to characterize sources of error from the simplified model. Materials Physical models of two unruptured aneurysms were created using three-dimensional printing. The models were treated with coil embolization using the same coils as those used in actual patient treatment and then scanned by synchrotron X-ray microtomography to obtain high-resolution imaging of the coil mass. Computational modeling of each aneurysm was performed using patient-specific boundary conditions. The coils were modeled using the simplified porous medium or by incorporating the X-ray imaged coil surface, and the differences in hemodynamic variables were assessed. Results X-ray microtomographic imaging of coils and incorporation into computational models were successful for both aneurysms. Porous medium calculations of coiled aneurysm hemodynamics overestimated intra-aneurysmal flow, underestimated oscillatory shear index and viscous dissipation, and over- or underpredicted wall shear stress (WSS) and WSS gradient compared with X-ray-based coiled computational fluid dynamics models. Conclusions Computational modeling of coiled intracranial aneurysms using the porous medium approach may inaccurately estimate key hemodynamic variables compared with models incorporating high-resolution synchrotron X-ray microtomographic imaging of complex aneurysm coil geometry.


Physiological Measurement | 2015

In vitro validation of endovascular Doppler-derived flow rates in models of the cerebral circulation

Patrick M. McGah; John D. Nerva; Ryan P. Morton; Michael Barbour; Michael R. Levitt; P D Mourad; Louis J. Kim; Alberto Aliseda

This study presents validation of endovascular Doppler velocimetry-based volumetric flow rate measurements conducted in a pulsatile flow loop simulating conditions in both the internal carotid and basilar artery. In vitro models of cerebral vessels, each containing an aneurysm, were fabricated from patient anatomies extracted from 3D rotational angiography. Flow velocity measurements were collected with three different experimental techniques: an endovascular Doppler wire, Particle Image Velocimetry, and a time-resolved ultrasonic flow meter. Womersleys theory of pulsatile flow in a cylindrical vessel was used to compute time-resolved volumetric flow rates from the endovascular Doppler velocity. The volumetric flow rates computed from the Doppler measurements were compared to those from the Particle Image Velocimetry profile measurements, and the direct measurements from the ultrasonic flow meter. The study establishes confidence intervals for any systematic or random errors associated with the wire-derived flow rates as benchmarked to the other two modalities. There is an approximately 10% random error in the Doppler-derived peak and time-averaged flow rates. There is a measurable uniform bias, about 15% too low, in the time-averaged Doppler-derived flow rates. There is also a small proportional bias in the peak systolic Doppler-derived flow rates. Potential sources of error are also discussed.


Cardiovascular Engineering and Technology | 2018

Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge

Kristian Valen-Sendstad; Aslak W. Bergersen; Yuji Shimogonya; Leonid Goubergrits; Jan Bruening; Jordi Pallarès; Salvatore Cito; Senol Piskin; Kerem Pekkan; Arjan J. Geers; Ignacio Larrabide; Saikiran Rapaka; Viorel Mihalef; Wenyu Fu; Aike Qiao; Kartik Jain; Sabine Roller; Kent-Andre Mardal; Ramji Kamakoti; Thomas Spirka; Neil Ashton; Alistair Revell; Nicolas Aristokleous; J. Graeme Houston; Masanori Tsuji; Fujimaro Ishida; Prahlad G. Menon; Leonard D. Browne; Stephen P. Broderick; Masaaki Shojima

PurposeImage-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline.Methods3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods, boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters.ResultsA total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability.ConclusionsWide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.


Asaio Journal | 2015

Convective Leakage Makes Heparin Locking of Central Venous Catheters Ineffective Within Seconds: Experimental Measurements in a Model Superior Vena Cava.

Michael Barbour; Patrick M. McGah; Chin H. Ng; Alicia Clark; Kenneth W. Gow; Alberto Aliseda

Central venous catheters (CVCs), placed in the superior vena cava (SVC) for hemodialysis or chemotherapy, are routinely filled while not in use with heparin, an anticoagulant, to maintain patency and prevent thrombus formation at the catheter tip. The heparin-locking procedure, however, places the patient at risk for systemic bleeding, as heparin is known to leak from the catheter into the blood stream. We provide evidence from detailed in vitro experiments that shows the driving mechanism behind heparin leakage to be convective–diffusive transport due to the pulsatile flow surrounding the catheter. This novel mechanism is supported by experimental planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements of flow velocity and heparin transport from a CVC placed inside a model SVC inside a pulsatile flow loop. The results predict an initial, fast (<10 s), convection-dominated phase that rapidly depletes the concentration of heparin in the near-tip region, the region of the catheter with side holes. This is followed by a slow, diffusion-limited phase inside the catheter lumen, where the concentration is still high, that is insufficient at replenishing the lost heparin concentration in the near-tip region. The results presented here, which are consistent with previous in vivo estimates of 24 hour leakage rates, predict that the concentration of heparin in the near-tip region is essentially zero for the majority of the interdialytic phase, rendering the heparin locking procedure ineffective.


Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments | 2013

Heparin Leakage by Advective-Diffusive Transport in Central Venous Catheters

Patrick M. McGah; Michael Barbour; Alberto Aliseda; Kenneth W. Gow

Central venous catheters (CVCs) are used as a way to provide adequate access of blood flow for hemodialysis, a common treatment for end-stage kidney disease. During hemodialysis, the catheter must circulate up to 300 mL/min [1] of blood flow to the extracorporeal artificial kidney. Catheters contain two lumens: the inflow lumen provides flow to the artificial kidney, and the outflow lumen returns it to the patient’s circulation. Although catheters are used in the treatment of patients of all ages, this study is motivated by the use of central venous catheters for pediatric applications; the catheter types and calibers available for children are much more limited than for adults, thereby placing children in a further disadvantage and potentially subjecting them to increased risk of complications.Copyright


Asaio Journal | 2018

Convectively Dominated Heparin Leakage From Multiple Catheter Designs: An In Vitro Experimental Study

Michael Barbour; Kenneth W. Gow; Alberto Aliseda


Bulletin of the American Physical Society | 2017

Parametric Characterization of Flow Inside Cererbal Aneurysms Treated with Flow-Diverting Stents

Michael Barbour; Michael R. Levitt; Christian Geindreau; Luke Johnson; Keshav Chivukula; Alberto Aliseda


Bulletin of the American Physical Society | 2016

Physiologically-relevant measurements of flow through coils and stents: towards improved modeling of endovascular treatment of intracranial aneurysms

Michael Barbour; Michael R. Levitt; Christian Geindreau; Sabine Rolland du Roscoat; Luke Johnson; Keshav Chivukula; Alberto Aliseda


Bulletin of the American Physical Society | 2014

Hemodynamic Changes in Treated Cerebral Aneurysms and Correlations with Long-Term Outcomes

Patrick M. McGah; Michael Barbour; Michael R. Levitt; Louis J. Kim; Alberto Aliseda

Collaboration


Dive into the Michael Barbour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis J. Kim

University of Washington

View shared research outputs
Top Co-Authors

Avatar

John D. Nerva

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ryan P. Morton

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Christian Geindreau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alicia Clark

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Sabine Rolland du Roscoat

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge