Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Bendersky is active.

Publication


Featured researches published by Michael Bendersky.


international acm sigir conference on research and development in information retrieval | 2016

Learning to Rank with Selection Bias in Personal Search

Xuanhui Wang; Michael Bendersky; Donald Metzler; Marc Najork

Click-through data has proven to be a critical resource for improving search ranking quality. Though a large amount of click data can be easily collected by search engines, various biases make it difficult to fully leverage this type of data. In the past, many click models have been proposed and successfully used to estimate the relevance for individual query-document pairs in the context of web search. These click models typically require a large quantity of clicks for each individual pair and this makes them difficult to apply in systems where click data is highly sparse due to personalized corpora and information needs, e.g., personal search. In this paper, we study the problem of how to leverage sparse click data in personal search and introduce a novel selection bias problem and address it in the learning-to-rank framework. This paper proposes a few bias estimation methods, including a novel query-dependent one that captures queries with similar results and can successfully deal with sparse data. We empirically demonstrate that learning-to-rank that accounts for query-dependent selection bias yields significant improvements in search effectiveness through online experiments with one of the worlds largest personal search engines.


knowledge discovery and data mining | 2014

Up next: retrieval methods for large scale related video suggestion

Michael Bendersky; Lluis Garcia-Pueyo; Jeremiah Harmsen; Vanja Josifovski; Dima Lepikhin

The explosive growth in sharing and consumption of the video content on the web creates a unique opportunity for scientific advances in video retrieval, recommendation and discovery. In this paper, we focus on the task of video suggestion, commonly found in many online applications. The current state-of-the-art video suggestion techniques are based on the collaborative filtering analysis, and suggest videos that are likely to be co-viewed with the watched video. In this paper, we propose augmenting the collaborative filtering analysis with the topical representation of the video content to suggest related videos. We propose two novel methods for topical video representation. The first method uses information retrieval heuristics such as tf-idf, while the second method learns the optimal topical representations based on the implicit user feedback available in the online scenario. We conduct a large scale live experiment on YouTube traffic, and demonstrate that augmenting collaborative filtering with topical representations significantly improves the quality of the related video suggestions in a live setting, especially for categories with fresh and topically-rich video content such as news videos. In addition, we show that employing user feedback for learning the optimal topical video representations can increase the user engagement by more than 80% over the standard information retrieval representation, when compared to the collaborative filtering baseline.


international acm sigir conference on research and development in information retrieval | 2015

Learning to Extract Local Events from the Web

John Foley; Michael Bendersky; Vanja Josifovski

The goal of this work is extraction and retrieval of local events from web pages. Examples of local events include small venue concerts, theater performances, garage sales, movie screenings, etc. We collect these events in the form of retrievable calendar entries that include structured information about event name, date, time and location. Between existing information extraction techniques and the availability of information on social media and semantic web technologies, there are numerous ways to collect commercial, high-profile events. However, most extraction techniques require domain-level supervision, which is not attainable at web scale. Similarly, while the adoption of the semantic web has grown, there will always be organizations without the resources or the expertise to add machine-readable annotations to their pages. Therefore, our approach bootstraps these explicit annotations to massively scale up local event extraction. We propose a novel event extraction model that uses distant supervision to assign scores to individual event fields (event name, date, time and location) and a structural algorithm to optimally group these fields into event records. Our model integrates information from both the entire source document and its relevant sub-regions, and is highly scalable. We evaluate our extraction model on all 700 million documents in a large publicly available web corpus, ClueWeb12. Using the 217,000 unique explicitly annotated events as distant supervision, we are able to double recall with 85% precision and quadruple it with 65% precision, with no additional human supervision. We also show that our model can be bootstrapped for a fully supervised approach, which can further improve the precision by 30%. In addition, we evaluate the geographic coverage of the extracted events. We find that there is a significant increase in the geo-diversity of extracted events compared to existing explicit annotations, while maintaining high precision levels.


international world wide web conferences | 2017

Situational Context for Ranking in Personal Search

Hamed Zamani; Michael Bendersky; Xuanhui Wang; Mingyang Zhang

Modern search engines leverage a variety of sources, beyond the conventional query-document content similarity, to improve their ranking performance. Among them, query context has attracted attention in prior work. Previously, query context was mainly modeled by user search history, either long-term or short-term, to help the ranking of future queries. In this paper, we focus on situational context, i.e., the contextual features of the current search request that are independent from both query content and user history. As an example, situational context can depend on search request time and location. We propose two context-aware ranking models based on neural networks. The first model learns a low-dimensional deep representation from the combination of contextual features. The second model extends the first one by leveraging binarized contextual features in addition to the high-level abstractions learned using a deep network. The existing context-aware ranking models are mainly based on search history, especially click data that can be gathered from the search engine logs. Although context-aware models have been widely explored in web search, their influence on search scenarios where click data is highly sparse is relatively unstudied. The focus of this paper, personal search (e.g., email search or on-device search), is one of such scenarios. We evaluate our models using the click data collected from one of the worlds largest personal search engines. The experiments demonstrate that the proposed models significantly outperform the baselines which do not take context into account. These results indicate the importance of situational context for personal search, and open up a venue for further exploration of situational context in other search scenarios.


web search and data mining | 2016

Hierarchical Label Propagation and Discovery for Machine Generated Email

James B. Wendt; Michael Bendersky; Lluis Garcia-Pueyo; Vanja Josifovski; Balint Miklos; Ivo Krka; Amitabh Saikia; Jie Yang; Marc-Allen Cartright; Sujith Ravi

Machine-generated documents such as email or dynamic web pages are single instantiations of a pre-defined structural template. As such, they can be viewed as a hierarchy of template and document specific content. This hierarchical template representation has several important advantages for document clustering and classification. First, templates capture common topics among the documents, while filtering out the potentially noisy variabilities such as personal information. Second, template representations scale far better than document representations since a single template captures numerous documents. Finally, since templates group together structurally similar documents, they can propagate properties between all the documents that match the template. In this paper, we use these advantages for document classification by formulating an efficient and effective hierarchical label propagation and discovery algorithm. The labels are propagated first over a template graph (constructed based on either term-based or topic-based similarities), and then to the matching documents. We evaluate the performance of the proposed algorithm using a large donated email corpus and show that the resulting template graph is significantly more compact than the corresponding document graph and the hierarchical label propagation is both efficient and effective in increasing the coverage of the baseline document classification algorithm. We demonstrate that the template label propagation achieves more than 91% precision and 93% recall, while increasing the label coverage by more than 11%.


web search and data mining | 2017

Related Event Discovery

Cheng Li; Michael Bendersky; Vijay Garg; Sujith Ravi

We consider the problem of discovering local events on the web, where events are entities extracted from webpages. Examples of such local events include small venue concerts, farmers markets, sports activities, etc. Given an event entity, we propose a graph-based framework for retrieving a ranked list of related events that a user is likely to be interested in attending. Due to the difficulty of obtaining ground-truth labels for event entities, which are temporal and are constrained by location, our retrieval framework is unsupervised, and its graph-based formulation addresses (a) the challenge of feature sparseness and noisiness, and (b) the semantic mismatch problem in a self-contained and principled manner. To validate our methods, we collect human annotations and conduct a comprehensive empirical study, analyzing the performance of our methods with regard to relevance, recall, and diversity. This study shows that our graph-based framework is significantly better than any individual feature source, and can be further improved with minimal supervision.


international joint conference on artificial intelligence | 2018

Learning with Sparse and Biased Feedback for Personal Search

Michael Bendersky; Xuanhui Wang; Marc Najork; Donald Metzler

Personal search, including email, on-device, and personal media search, has recently attracted a considerable attention from the information retrieval community. In this paper, we provide an overview of challenges and opportunities of learning with implicit user feedback (e.g., click data) in personal search. Implicit user feedback provides a convenient source of supervision for ranking models in personal search. This feedback, however, has two major drawbacks: it is highly sparse and biased due to the personal nature of queries and documents. We demonstrate how these drawbacks can be overcome, and empirically demonstrate the benefits of learning with implicit feedback in the context of a large-scale email search engine1 .


conference on information and knowledge management | 2018

Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering

Jiaming Shen; Maryam Karimzadehgan; Michael Bendersky; Zhen Qin; Donald Metzler

User information needs vary significantly across different tasks, and therefore their queries will also differ considerably in their expressiveness and semantics. Many studies have been proposed to model such query diversity by obtaining query types and building query-dependent ranking models. These studies typically require either a labeled query dataset or clicks from multiple users aggregated over the same document. These techniques, however, are not applicable when manual query labeling is not viable, and aggregated clicks are unavailable due to the private nature of the document collection, e.g., in email search scenarios. In this paper, we study how to obtain query type in an unsupervised fashion and how to incorporate this information into query-dependent ranking models. We first develop a hierarchical clustering algorithm based on truncated SVD and varimax rotation to obtain coarse-to-fine query types. Then, we study three query-dependent ranking models, including two neural models that leverage query type information as additional features, and one novel multi-task neural model that views query type as the label for the auxiliary query cluster prediction task. This multi-task model is trained to simultaneously rank documents and predict query types. Our experiments on tens of millions of real-world email search queries demonstrate that the proposed multi-task model can significantly outperform the baseline neural ranking models, which either do not incorporate query type information or just simply feed query type as an additional feature.


conference on information and knowledge management | 2018

The LambdaLoss Framework for Ranking Metric Optimization

Xuanhui Wang; Cheng Li; Nadav Golbandi; Michael Bendersky; Marc Najork

How to optimize ranking metrics such as Normalized Discounted Cumulative Gain (NDCG) is an important but challenging problem, because ranking metrics are either flat or discontinuous everywhere, which makes them hard to be optimized directly. Among existing approaches, LambdaRank is a novel algorithm that incorporates ranking metrics into its learning procedure. Though empirically effective, it still lacks theoretical justification. For example, the underlying loss that LambdaRank optimizes for remains unknown until now. Due to this, there is no principled way to advance the LambdaRank algorithm further. In this paper, we present LambdaLoss, a probabilistic framework for ranking metric optimization. We show that LambdaRank is a special configuration with a well-defined loss in the LambdaLoss framework, and thus provide theoretical justification for it. More importantly, the LambdaLoss framework allows us to define metric-driven loss functions that have clear connection to different ranking metrics. We show a few cases in this paper and evaluate them on three publicly available data sets. Experimental results show that our metric-driven loss functions can significantly improve the state-of-the-art learning-to-rank algorithms.


Foundations and Trends in Information Retrieval | 2015

Information Retrieval with Verbose Queries

Manish Gupta; Michael Bendersky

Collaboration


Dive into the Michael Bendersky's collaboration.

Top Co-Authors

Avatar

Cheng Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

John Foley

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge