Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Berney is active.

Publication


Featured researches published by Michael Berney.


Applied and Environmental Microbiology | 2007

Assessment and Interpretation of Bacterial Viability by Using the LIVE/DEAD BacLight Kit in Combination with Flow Cytometry

Michael Berney; Frederik Hammes; Franziska Bosshard; Hans Ulrich Weilenmann; Thomas Egli

ABSTRACT The commercially available LIVE/DEAD BacLight kit is enjoying increased popularity among researchers in various fields of microbiology. Its use in combination with flow cytometry brought up new questions about how to interpret LIVE/DEAD staining results. Intermediate states, normally difficult to detect with epifluorescence microscopy, are a common phenomenon when the assay is used in flow cytometry and still lack rationale. It is shown here that the application of propidium iodide in combination with a green fluorescent total nucleic acid stain on UVA-irradiated cells of Escherichia coli, Salmonella enterica serovar Typhimurium, Shigella flexneri, and a community of freshwater bacteria resulted in a clear and distinctive flow cytometric staining pattern. In the gram-negative bacterium E. coli as well as in the two enteric pathogens, the pattern can be related to the presence of intermediate cellular states characterized by the degree of damage afflicted specifically on the bacterial outer membrane. This hypothesis is supported by the fact that EDTA-treated nonirradiated cells exhibit the same staining properties. On the contrary, this pattern was not observed in gram-positive Enterococcus faecalis, which lacks an outer membrane. Our observations add a new aspect to the LIVE/DEAD stain, which so far was believed to be dependent only on cytoplasmic membrane permeability.


Water Research | 2008

Rapid, cultivation-independent assessment of microbial viability in drinking water

Michael Berney; Marius Vital; Iris Hülshoff; Hans Ulrich Weilenmann; Thomas Egli; Frederik Hammes

Fast and accurate monitoring of chemical and microbiological parameters in drinking water is essential to safeguard the consumer and to improve the understanding of treatment and distribution systems. However, most water utilities and drinking water guidelines still rely solely on time-requiring heterotrophic plate counts (HPC) and plating for faecal indicator bacteria as regular microbiological control parameters. The recent development of relative simple bench-top flow cytometers has made rapid and quantitative analysis of cultivation-independent microbial parameters more feasible than ever before. Here we present a study using a combination of cultivation-independent methods including fluorescence staining (for membrane integrity, membrane potential and esterase activity) combined with flow cytometry and total adenosine tri-phosphate (ATP) measurements, to assess microbial viability in drinking water. We have applied the methods to different drinking water samples including non-chlorinated household tap water, untreated natural spring water, and commercially available bottled water. We conclude that the esterase-positive cell fraction, the total ATP values and the high nucleic acid (HNA) bacterial fraction (from SYBR Green I staining) were most representative of the active/viable population in all of the water samples. These rapid methods present an alternative way to assess the general microbial quality of drinking water as well as specific events that can occur during treatment and distribution, with equal application possibilities in research and routine analysis.


Journal of Applied Microbiology | 2006

Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae

Michael Berney; Hans Ulrich Weilenmann; A. Simonetti; Thomas Egli

Aims:  To determine the efficacy of solar disinfection (SODIS) for enteric pathogens and to test applicability of the reciprocity law.


Applied and Environmental Microbiology | 2006

Specific Growth Rate Determines the Sensitivity of Escherichia coli to Thermal, UVA, and Solar Disinfection

Michael Berney; Hans Ulrich Weilenmann; Julian Ihssen; Claudio Bassin; Thomas Egli

ABSTRACT Knowledge about the sensitivity of the test organism is essential for the evaluation of any disinfection method. In this work we show that sensitivity of Escherichia coli MG1655 to three physical stresses (mild heat, UVA light, and sunlight) that are relevant in the disinfection of drinking water with solar radiation is determined by the specific growth rate of the culture. Batch- and chemostat-cultivated cells from cultures with similar specific growth rates showed similar stress sensitivities. Generally, fast-growing cells were more sensitive to the stresses than slow-growing cells. For example, slow-growing chemostat-cultivated cells (D = 0.08 h−1) and stationary-phase bacteria from batch culture that were exposed to mild heat had very similar T90 (time until 90% of the population is inactivated) values (T90, chemostat = 2.66 h; T90, batch = 2.62 h), whereas T90 for cells growing at a μ of 0.9 h−1 was 0.2 h. We present evidence that the stress sensitivity of E. coli is correlated with the intracellular level of the alternative sigma factor RpoS. This is also supported by the fact that E. coli rpoS mutant cells were more stress sensitive than the parent strain by factors of 4.9 (mild heat), 5.3 (UVA light), and 4.1 (sunlight). Furthermore, modeling of inactivation curves with GInaFiT revealed that the shape of inactivation curves changed depending on the specific growth rate. Inactivation curves of cells from fast-growing cultures (μ = 1.0 h−1) that were irradiated with UVA light showed a tailing effect, while for slow-growing cultures (μ = 0.3 h−1), inactivation curves with shoulders were obtained. Our findings emphasize the need for accurate reporting of specific growth rates and detailed culture conditions in disinfection studies to allow comparison of data from different studies and laboratories and sound interpretation of the data obtained.


PLOS ONE | 2010

Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia

Michael Berney; Gregory M. Cook

Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I) and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases) to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation) responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their ability to survive under low energy conditions and hypoxia.


Advances in Microbial Physiology | 2009

Physiology of Mycobacteria

Gregory M. Cook; Michael Berney; Susanne Gebhard; Matthias Heinemann; Robert A. Cox; Olga Danilchanka; Michael Niederweis

Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.


Microbiology | 2009

Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry

Franziska Bosshard; Michael Berney; Michael Scheifele; Hans Ulrich Weilenmann; Thomas Egli

Pathogenic enteric bacteria are a major cause of drinking water related morbidity and mortality in developing countries. Solar disinfection (SODIS) is an effective means to fight this problem. In the present study, SODIS of two important enteric pathogens, Shigella flexneri and Salmonella typhimurium, was investigated with a variety of viability indicators including cellular ATP levels, efflux pump activity, glucose uptake ability, and polarization and integrity of the cytoplasmic membrane. The respiratory chain of enteric bacteria was identified to be a likely target of sunlight and UVA irradiation. Furthermore, during dark storage after irradiation, the physiological state of the bacterial cells continued to deteriorate even in the absence of irradiation: apparently the cells were unable to repair damage. This strongly suggests that for S. typhimurium and Sh. flexneri, a relatively small light dose is enough to irreversibly damage the cells and that storage of bottles after irradiation does not allow regrowth of inactivated bacterial cells. In addition, we show that light dose reciprocity is an important issue when using simulated sunlight. At high irradiation intensities (>700 W m(-2)) light dose reciprocity failed and resulted in an overestimation of the effect, whereas reciprocity applied well around natural sunlight intensity (<400 W m(-2)).


Journal of Antimicrobial Chemotherapy | 2015

Bactericidal mode of action of bedaquiline

Kiel Hards; Jennifer Robson; Michael Berney; Lisa Shaw; Dirk Bald; Anil Koul; Koen Andries; Gregory M. Cook

OBJECTIVES It is not fully understood why inhibiting ATP synthesis in Mycobacterium species leads to death in non-replicating cells. We investigated the bactericidal mode of action of the anti-tubercular F1Fo-ATP synthase inhibitor bedaquiline (Sirturo™) in order to further understand the lethality of ATP synthase inhibition. METHODS Mycobacterium smegmatis strains were used for all the experiments. Growth and survival during a bedaquiline challenge were performed in multiple media types. A time-course microarray was performed during initial bedaquiline challenge in minimal medium. Oxygen consumption and proton-motive force measurements were performed on whole cells and inverted membrane vesicles, respectively. RESULTS A killing of 3 log10 cfu/mL was achieved 4-fold more quickly in minimal medium (a glycerol carbon source) versus rich medium (LB with Tween 80) during bedaquiline challenge. Assessing the accelerated killing condition, we identified a transcriptional remodelling of metabolism that was consistent with respiratory dysfunction but inconsistent with ATP depletion. In glycerol-energized cell suspensions, bedaquiline caused an immediate 2.3-fold increase in oxygen consumption. Bedaquiline collapsed the transmembrane pH gradient, but not the membrane potential, in a dose-dependent manner. Both these effects were dependent on binding to the F1Fo-ATP synthase. CONCLUSIONS Challenge with bedaquiline results in an electroneutral uncoupling of respiration-driven ATP synthesis. This may be a determinant of the bactericidal effects of bedaquiline, while ATP depletion may be a determinant of its delayed onset of killing. We propose that bedaquiline binds to and perturbs the a-c subunit interface of the Fo, leading to futile proton cycling, which is known to be lethal to mycobacteria.


Molecular Microbiology | 2012

Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia

Michael Berney; Marion R. Weimar; Adam Heikal; Gregory M. Cook

Genes with a role in proline metabolism are strongly expressed when mycobacterial cells are exposed to nutrient starvation and hypoxia. Here we show that proline metabolism in mycobacteria is mediated by the monofunctional enzymes Δ1‐pyrroline‐5‐carboxylate dehydrogenase (PruA) and proline dehydrogenase (PruB). Proline metabolism was controlled by a unique membrane‐associated DNA‐binding protein PruC. Under hypoxia, addition of proline led to higher biomass production than in the absence of proline despite excess carbon and nitrogen. To identify the mechanism responsible for this enhanced growth, microarray analysis of wild‐type Mycobacterium smegmatis versus pruC mutant was performed. Expression of the DNA repair machinery and glyoxalases was increased in the pruC mutant. Glyoxalases are proposed to degrade methylglyoxal, a toxic metabolite produced by various bacteria due to an imbalance in intermediary metabolism, suggesting the pruC mutant was under methylglyoxal stress. Consistent with this notion, pruB and pruC mutants were hypersensitive to methylglyoxal. Δ1‐pyrroline‐5‐carboxylate is reported to react with methylglyoxal to form non‐toxic 2‐acetyl‐1‐pyrroline, thus providing a link between proline metabolism and methylglyoxal detoxification. In support of this mechanism, we show that proline metabolism protects mycobacterial cells from methylglyoxal toxicity and that functional proline dehydrogenase, but not Δ1‐pyrroline‐5‐carboxylate dehydrogenase, is essential for this protective effect.


Journal of Bacteriology | 2010

The SigF Regulon in Mycobacterium smegmatis Reveals Roles in Adaptation to Stationary Phase, Heat and Oxidative Stress

Anja Hümpel; Susanne Gebhard; Gregory M. Cook; Michael Berney

SigF is an alternative sigma factor that is highly conserved among species of the genus Mycobacterium. In this study we identified the SigF regulon in Mycobacterium smegmatis using whole-genome microarray and promoter consensus analyses. In total, 64 genes in exponential phase and 124 genes in stationary phase are SigF dependent (P < 0.01, >2-fold expression change). Our experimental data reveal the SigF-dependent promoter consensus GTTT-N((15-17))-GGGTA for M. smegmatis, and we propose 130 potential genes under direct control of SigF, of which more than 50% exhibited reduced expression in a Delta sigF strain. We previously reported an increased susceptibility of the Delta sigF strain to heat and oxidative stress, and our expression data indicate a molecular basis for these phenotypes. We observed SigF-dependent expression of several genes purportedly involved in oxidative stress defense, namely, a heme-containing catalase, a manganese-containing catalase, a superoxide dismutase, the starvation-induced DNA-protecting protein MsDps1, and the biosynthesis genes for the carotenoid isorenieratene. Our data suggest that SigF regulates the biosynthesis of the thermoprotectant trehalose, as well as an uptake system for osmoregulatory compounds, and this may explain the increased heat susceptibility of the Delta sigF strain. We identified the regulatory proteins SigH3, PhoP, WhiB1, and WhiB4 as possible genes under direct control of SigF and propose four novel anti-sigma factor antagonists that could be involved in the posttranslational regulation of SigF in M. smegmatis. This study emphasizes the importance of this sigma factor for stationary-phase adaptation and stress response in mycobacteria.

Collaboration


Dive into the Michael Berney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Egli

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Ulrich Weilenmann

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chris Greening

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

William R. Jacobs

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Frederik Hammes

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Travis Hartman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Vilchèze

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge