Michael Bielmann
Swiss Federal Laboratories for Materials Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Bielmann.
Applied Physics Letters | 2010
Shunsuke Kato; Michael Bielmann; Kazutaka Ikeda; Shin-ichi Orimo; Andreas Borgschulte; Andreas Züttel
Surface change of α-AlH3 during the hydrogen desorption was investigated by means of in situ x-ray photoelectron spectroscopy combined with thermal desorption spectroscopy. The surface of AlH3 covered by an oxide layer significantly changes upon hydrogen desorption and the hydrogen desorption rate increases remarkably. In this study, the role of the surface oxide layer on AlH3 in view of the hydrogen desorption kinetics was investigated. AlH3 only decomposes into Al and H2 at the free surface and not in the bulk. Therefore, a closed surface oxide layer prevents the thermodynamically unstable AlH3 from decomposition.
Physical Chemistry Chemical Physics | 2010
Shunsuke Kato; Michael Bielmann; Andreas Borgschulte; Valentina Zakaznova-Herzog; Arndt Remhof; Shin-ichi Orimo; Andreas Züttel
The surface oxidation behavior of LiBH(4) and NaBH(4) was investigated in view of the formation and structure of the surface oxidation and its effect on the hydrogen desorption kinetics. The sample surfaces were intentionally modified by exposure to oxygen in the pressure range from 10(-10) mbar up to 200 mbar. The induced surface changes were systematically studied by means of X-ray photoelectron spectroscopy. NaBH(4) shows a low reactivity with oxygen, while LiBH(4) oxidizes rapidly, accompanied by surface segregation of Li. The hydrogen desorption kinetics of LiBH(4) were studied by thermal desorption spectroscopy with particular emphasis on the analysis of the desorbed gases, i.e. diborane and hydrogen. The surface oxidation induces the formation of a Li(2)O layer on LiBH(4), significantly reduces the desorption of diborane, and enhances the rate of hydrogen desorption.
Physical Chemistry Chemical Physics | 2012
Shunsuke Kato; Andreas Borgschulte; Michael Bielmann; Andreas Züttel
The use of the interaction of two hydrides is a well-known concept used to increase the hydrogen equilibrium pressure of composite mixtures in comparison to that of pure systems. The thermodynamics and reaction kinetics of such hydride composites are reviewed and experimentally verified using the example NaBH(4) + MgH(2). Particular emphasis is placed on the measurement of the kinetics and stability using thermodesorption experiments and measurements of pressure-composition isotherms, respectively. The interface reactions in the composite reaction were analysed by in situ X-ray photoelectron spectroscopy and by simultaneously probing D(2) desorption from NaBD(4) and H(2) desorption from MgH(2). The observed destabilisation is in quantitative agreement with the calculated thermodynamic properties, including enthalpy and entropy. The results are discussed with respect to kinetic limitations of the hydrogen desorption mechanism at interfaces. General aspects of modifying hydrogen sorption properties via hydride composites are given.
Physical Chemistry Chemical Physics | 2012
Shunsuke Kato; Andreas Borgschulte; Davide Ferri; Michael Bielmann; Jean-Claude Crivello; Daniel Wiedenmann; Magdalena Parlinska-Wojtan; Peggy Rossbach; Ye Lu; Arndt Remhof; Andreas Züttel
The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.
Review of Scientific Instruments | 2011
Ph. Mauron; Michael Bielmann; Arndt Remhof; Andreas Züttel
We present the design and construction of a high-pressure (200 bars) and high-temperature (600 °C) x-ray diffraction (XRD) cell for the in situ investigation of the hydrogen sorption of hydrides. In combination with a pressure, composition, and temperature system, simultaneous XRD and volumetric measurements become accessible. The cell consists of an x-ray semi-transparent hemispherical beryllium (Be) dome covering a heatable sample stage, which simultaneously allows sample temperatures of up to 600 °C in an applied hydrogen atmosphere of up to 200 bars. The system volume is as low as possible to maximize the precision of the volumetric measurements. Due to the high thermal conductivity of hydrogen, and in order to preserve the mechanical stability of the beryllium, the cell is water cooled. Its operability was studied on the example of the hydrogen absorption of Mg(2)Ni. The advantages and limitations of the proposed design are discussed.
Review of Scientific Instruments | 2009
Ph. Mauron; Michael Bielmann; V. Bissig; Arndt Remhof; Andreas Züttel
The design and construction of a high-pressure (200 bar) and high-temperature (600 degrees C) heat-flow differential scanning calorimeter (DSC) for the in situ investigation of the hydrogenation and dehydrogenation reactions of hydrides is presented. In combination with a pressure-concentration-temperature (pcT) system, simultaneous thermodynamic and volumetric measurements become accessible. Due to the high thermal conductivity of hydrogen, only the sample cell and the reference cell are exposed to hydrogen and the remaining system is under ambient conditions. This separation has the advantage that the calibration factor is independent of the hydrogen pressure. The internal empty volume of the combined system is as low as possible to maximize the precision of the pcT measurements. The calorimetric block of the DSC is designed with a silver/copper alloy and the temperature measurements are made resistively with platinum temperature sensors (Pt 100). The instrument was calibrated and its operability was successfully studied on the example of the hydrogen sorption behavior of LaNi(5).
Proceedings of the International Symposium | 2009
Andreas Borgschulte; Shunsuke Kato; Michael Bielmann; Andreas Züttel
Note: Times Cited: 0International Symposium on Materials Issues in a Hydrogen EconomyNov 12-15, 2007Richmond, VA Reference EPFL-BOOK-205913doi:10.1142/9789812838025_0017View record in Web of Science URL: ://WOS:000270024700017 Record created on 2015-03-03, modified on 2017-05-12
Journal of Physical Chemistry B | 2008
Philippe Mauron; F. Buchter; O. Friedrichs; Arndt Remhof; Michael Bielmann; Christoph N. Zwicky; Andreas Züttel
Physical Review B | 2002
Pascal Ruffieux; Oliver Gröning; Michael Bielmann; P. Mauron; L. Schlapbach; P. Gröning
Physical Review B | 2002
Michael Bielmann; P. Schwaller; Pascal Ruffieux; Oliver Gröning; L. Schlapbach; P. Gröning
Collaboration
Dive into the Michael Bielmann's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputs