Michael Bildhauer
Saarland University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Bildhauer.
Asymptotic Analysis | 2001
Michael Bildhauer; Martin Fuchs
We consider integrands f:\mathbb{R}^{nN}\rightarrow\mathbb{R} which are of lower (upper) growth rate s\geq2(q>s) and which satisfy an additional structural condition implying the convex hull property, i.e. if the boundary data of a minimizer u:\Omega\rightarrow\mathbb{R}^{N} of the energy \int_{\Omega}f(\nabla u)dx respect a closed convex set K\subset\mathbb{R}^{N}, then so does u on the whole domain. We show partial C^{1,\alpha}-regularity of bounded local minimizers if q<min\{s+\frac{2}{3},s\frac{n}{n-2}\} and discuss cases in which the latter condition on the exponents can be improved. Moreover, we give examples of integrands which fit into our category and to which the results of Acerbi and Fusco [AF2] do not apply, in particular, we give some extensions to the subquadratic case.
Journal of Mathematical Fluid Mechanics | 2003
Michael Bildhauer; Martin Fuchs
AbstractWe investigate the smoothness properties of local solutions of the nonlinear Stokes problem
Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze | 2007
Michael Bildhauer; Martin Fuchs; Xiao Zhong
\begin{eqnarray*}-\diverg \{T(\eps(v))\} + \nabla \pi &=& g \msp \mbox{on
Archive | 2002
Michael Bildhauer; Martin Fuchs
\Omega
Manuscripta Mathematica | 2003
Michael Bildhauer
,}\\\diverg v&\equiv & 0 \msp \mbox{on
St Petersburg Mathematical Journal | 2007
Michael Bildhauer; Martin Fuchs; Xiao Zhong
\Omega
Archive | 2001
Michael Bildhauer; Martin Fuchs
,}\end{eqnarray*}
Annales Academiae Scientiarum Fennicae. Mathematica | 2008
Michael Bildhauer; Martin Fuchs; Sergey Repin
where v: Ω → ℝn is the velocity field,
Calculus of Variations and Partial Differential Equations | 2003
Michael Bildhauer; Martin Fuchs
\pi
Annales Academiae scientarum Fennicae. Mathematica | 2005
Michael Bildhauer; Martin Fuchs
: Ω → ℝ