Michael Bishof
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Bishof.
Nature | 2014
B. J. Bloom; Travis Nicholson; Jason Williams; S. L. Campbell; Michael Bishof; Xin Zhang; W. Zhang; Sarah Bromley; J. Ye
Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10−18, which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard—stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.
Physical Review Letters | 2012
Travis Nicholson; Michael J. Martin; Jason Williams; B. J. Bloom; Michael Bishof; Matthew Swallows; S. L. Campbell; J. Ye
Many-particle optical lattice clocks have the potential for unprecedented measurement precision and stability due to their low quantum projection noise. However, this potential has so far never been realized because clock stability has been limited by frequency noise of optical local oscillators. By synchronously probing two ^{87}Sr lattice systems using a laser with a thermal noise floor of 1×10(-15), we remove classically correlated laser noise from the intercomparison, but this does not demonstrate independent clock performance. With an improved optical oscillator that has a 1×10(-16) thermal noise floor, we demonstrate an order of magnitude improvement over the best reported stability of any independent clock, achieving a fractional instability of 1×10(-17) in 1000 s of averaging time for synchronous or asynchronous comparisons. This result is within a factor of 2 of the combined quantum projection noise limit for a 160 ms probe time with ~10(3) atoms in each clock. We further demonstrate that even at this high precision, the overall systematic uncertainty of our clock is not limited by atomic interactions. For the second Sr clock, which has a cavity-enhanced lattice, the atomic-density-dependent frequency shift is evaluated to be -3.11×10(-17) with an uncertainty of 8.2×10(-19).
Science | 2013
Michael J. Martin; Michael Bishof; Matthew Swallows; Xibo Zhang; Craig Benko; J. von-Stecher; Alexey V. Gorshkov; Ana Maria Rey; J. Ye
Strongly Correlated Clocks Optical lattice clocks with alkaline earth atoms provide one of the most stable time-keeping systems. Such clocks, in general, exhibit shifts in their transition frequencies as a consequence of interactions between atoms. Can this sensitivity be used to explore the dynamics of strongly correlated quantum systems? Martin et al. (p. 632) used a 1-dimensional optical lattice clock to study quantum many-body effects. Whereas the clock shift itself could be modeled within the mean field approximation, quantities such as spin noise required a full many-body treatment. This system may be useful for the quantum simulation of exotic magnetism. A one-dimensional lattice of pancake-shaped clouds of 87Sr atoms is used to realize a strongly correlated system of spins. Strongly interacting quantum many-body systems arise in many areas of physics, but their complexity generally precludes exact solutions to their dynamics. We explored a strongly interacting two-level system formed by the clock states in 87Sr as a laboratory for the study of quantum many-body effects. Our collective spin measurements reveal signatures of the development of many-body correlations during the dynamical evolution. We derived a many-body Hamiltonian that describes the experimental observation of atomic spin coherence decay, density-dependent frequency shifts, severely distorted lineshapes, and correlated spin noise. These investigations open the door to further explorations of quantum many-body effects and entanglement through use of highly coherent and precisely controlled optical lattice clocks.
Science | 2011
Matthew Swallows; Michael Bishof; Yige Lin; Sebastian Blatt; Michael J. Martin; Ana Maria Rey; J. Ye
Keeping Time Optical lattice clocks are comprised of atoms placed in an optical lattice formed by opposing laser beams and can be more precise than traditional microwave atomic clocks because of the higher frequency at which they operate, and the number of atoms available for interrogation. However, interactions between the atoms may lead to shifts in the frequency of the clock transition, usually proportional to the atomic density. Swallows et al. (p. 1043, published online 3 February) demonstrate an opposite and unexpected effect of interactions: For sufficiently strongly interacting systems, the frequency shift is suppressed. Indeed, in a strontium-based fermionic lattice clock, the shift and its associated spread were reduced by an order of magnitude. Increasing atomic interactions improved the accuracy and precision of a clock formed from atoms trapped in an optical lattice. Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation. However, sufficiently strong interactions can suppress collisional shifts in lattice sites containing more than one atom. We demonstrated the effectiveness of this approach with a strontium lattice clock by reducing both the collisional frequency shift and its uncertainty to the level of 10−17. This result eliminates the compromise between precision and accuracy in a many-particle system; both will continue to improve as the number of particles increases.
Nature Communications | 2016
Sarah Bromley; Bihui Zhu; Michael Bishof; Xibo Zhang; Tobias Bothwell; Johannes Schachenmayer; Travis Nicholson; Robin Kaiser; Susanne F. Yelin; Mikhail D. Lukin; Ana Maria Rey; J. Ye
We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >103 compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles.
Physical Review Letters | 2013
Michael Bishof; Xibo Zhang; Michael J. Martin; J. Ye
Interactions between atoms and lasers provide the potential for unprecedented control of quantum states. Fulfilling this potential requires detailed knowledge of frequency noise in optical oscillators with state-of-the-art stability. We demonstrate a technique that precisely measures the noise spectrum of an ultrastable laser using optical lattice-trapped 87Sr atoms as a quantum projection noise-limited reference. We determine the laser noise spectrum from near dc to 100 Hz via the measured fluctuations in atomic excitation, guided by a simple and robust theory model. The noise spectrum yields a 26(4) mHz linewidth at a central frequency of 429 THz, corresponding to an optical quality factor of 1.6×10(16). This approach improves upon optical heterodyne beats between two similar laser systems by providing information unique to a single laser and complements the traditionally used Allan deviation which evaluates laser performance at relatively long time scales. We use this technique to verify the reduction of resonant noise in our ultrastable laser via feedback from an optical heterodyne beat. Finally, we show that knowledge of our lasers spectrum allows us to accurately predict the laser-limited stability for optical atomic clocks.
Physical Review Letters | 2014
Eric M. Kessler; Peter Komar; Michael Bishof; Liang Jiang; Anders S. Sørensen; J. Ye; Mikhail D. Lukin
We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2012
Matthew Swallows; Michael J. Martin; Michael Bishof; Craig Benko; Yige Lin; Sebastian Blatt; Ana Maria Rey; J. Ye
We describe recent experimental progress with the JILA Sr optical frequency standard, which has a systematic uncertainty at the 10-16 fractional frequency level. An upgraded laser system has recently been constructed in our lab which may allow the JILA Sr standard to reach the standard quantum measurement limit and achieve record levels of stability. To take full advantage of these improvements, it will be necessary to operate a lattice clock with a large number of atoms, and systematic frequency shifts resulting from atomic interactions will become increasingly important. We discuss how collisional frequency shifts can arise in an optical lattice clock employing fermionic atoms and describe a novel method by which such systematic effects can be suppressed.
Annals of Physics | 2014
Ana Maria Rey; Alexey V. Gorshkov; Christina V. Kraus; Michael J. Martin; Michael Bishof; Matthew Swallows; Xin Zhang; Craig Benko; J. Ye; Nathan D. Lemke; Andrew D. Ludlow
Abstract : We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA 87Sr and NIST 171Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems.
Physical Review Letters | 2011
Michael Bishof; Yige Lin; Matthew Swallows; Alexey V. Gorshkov; J. Ye; Ana Maria Rey
We report the observation of resolved atomic interaction sidebands (ISB) in the (87)Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and useful spectroscopic tools in strongly interacting alkaline-earth gases.