Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Boschmann is active.

Publication


Featured researches published by Michael Boschmann.


Diabetes | 2006

Retinol-Binding Protein 4 in Human Obesity

Jürgen Janke; Stefan Engeli; Michael Boschmann; Frauke Adams; Jana Böhnke; Friedrich C. Luft; Arya M. Sharma; Jens Jordan

Studies in mice suggest that adipocytes serve as glucose sensors and regulate systemic glucose metabolism through release of serum retinol-binding protein 4 (RBP4). This model has not been validated in humans. RBP4 was highly expressed in isolated mature human adipocytes and secreted by differentiating human adipocytes. In contrast to the animal data, RBP4 mRNA was downregulated in subcutaneous adipose tissue of obese women, and circulating RBP4 concentrations were similar in normal weight, overweight, and obese women (n = 74). RBP4 was positively correlated with GLUT4 expression in adipose tissue, independent of any obesity-associated variable. Five percent weight loss slightly decreased adipose RBP4 expression but did not influence circulating RBP4. In another set of experiments, we stratified patients (n = 14) by low or high basal fasting interstitial glucose concentrations, as determined by the microdialysis technique. Venous glucose concentrations were similar throughout oral glucose tolerance testing, and basal RBP4 expression in adipose tissue and serum RBP4 concentrations were similar in the groups with higher and lower interstitial glucose levels. Our findings point to profound differences between rodents and humans in the regulation of adipose or circulating RBP4 and challenge the notion that glucose uptake by adipocytes has a dominant role in the regulation of RBP4.


Phytochemistry | 2009

The potential role of green tea catechins in the prevention of the metabolic syndrome - A review

Frank Thielecke; Michael Boschmann

The metabolic syndrome (MetS) represents an emerging health burden for governments and health care providers. Particularly relevant for prevention and early management of MetS are lifestyle conditions including physical activity and the diet. It has been shown that green tea, when consumed on a daily basis, supports health. Many of the beneficial effects of green tea are related to its catechin, particularly (-)-epigallocatechin-3-gallate (EGCG), content. There is conclusive evidence from in vitro and animal studies which provide the concepts for underlying functional mechanisms of green tea catechins and their biological actions. An increasing number of human studies have explored the effects of green tea catechins on the major MetS conditions such as obesity, type-2 diabetes and cardiovascular risk factors. This article provides a comprehensive overview of the human studies addressing the potential benefits of green tea catechins on the MetS. The number of human studies in this field is still limited. However, the majority of human epidemiological and intervention studies demonstrate beneficial effects of green tea or green tea extracts, rich in EGCG on weight management, glucose control and cardiovascular risk factors. The optimal dose has not yet been established. The current body of evidence in humans warrants further attention. In particular, well-controlled long-term human studies would help to fully understand the protective effects of green tea catechins on parameters related to the MetS.


Journal of Clinical Investigation | 2013

Immune cells control skin lymphatic electrolyte homeostasis and blood pressure

Helge Wiig; Agnes Schröder; Wolfgang Neuhofer; Jonathan Jantsch; Christoph W. Kopp; Tine V. Karlsen; Michael Boschmann; Jennifer Goss; Maija Bry; Natalia Rakova; Anke Dahlmann; Sven Brenner; Olav Tenstad; Harri Nurmi; Eero Mervaala; Hubertus Wagner; Franz-Xaver Beck; Dominik Müller; Dontscho Kerjaschki; Friedrich C. Luft; David G. Harrison; Kari Alitalo; Jens Titze

The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function.


Journal of The American College of Nutrition | 2007

The Effects of Epigallocatechin-3-Gallate on Thermogenesis and Fat Oxidation in Obese Men: A Pilot Study

Michael Boschmann; Frank Thielecke

Objectives: The development of obesity is characterized by an increase in adipose tissue mass and by concomitant and profound changes in almost all organ functions leading to diseases such as hypertension, diabetes mellitus and coronary heart disease. Recent data from human studies indicate that the consumption of green tea and green tea extracts may help reduce body weight, mainly body fat, by increasing postprandial thermogenesis and fat oxidation. However, human studies investigating the metabolic effects of the most predominant tea catechin, EGCG, alone are absent. Methods: In a randomized double blind, placebo-controlled, cross-over pilot study, six overweight men were given 300 mg EGCG/d for 2d. Fasting and postprandial changes in energy expenditure (EE) and substrate oxidation were assessed. Results: Resting EE did not differ significantly between EGCG and placebo treatments, although during the first postprandial monitoring phase, respiratory quotient (RQ) values were significantly lower with EGCG compared to the placebo. Conclusions: These findings suggest that EGCG alone has the potential to increase fat oxidation in men and may thereby contribute to the anti-obesity effects of green tea. However, more studies with a greater sample size and a broader range of age and BMI are needed to define the optimum dose.


Hepatology | 2011

Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects

Sven Haufe; Stefan Engeli; Petra Kast; Jana Böhnke; Wolfgang Utz; Verena Haas; Mario Hermsdorf; Anja Mähler; Susanne Wiesner; Andreas L. Birkenfeld; Henrike Sell; Christoph Otto; Heidrun Mehling; Friedrich C. Luft; J Eckel; Jeanette Schulz-Menger; Michael Boschmann; Jens Jordan

Obesity‐related hepatic steatosis is a major risk factor for metabolic and cardiovascular disease. Fat reduced hypocaloric diets are able to relieve the liver from ectopically stored lipids. We hypothesized that the widely used low carbohydrate hypocaloric diets are similarly effective in this regard. A total of 170 overweight and obese, otherwise healthy subjects were randomized to either reduced carbohydrate (n = 84) or reduced fat (n = 86), total energy restricted diet (−30% of energy intake before diet) for 6 months. Body composition was estimated by bioimpedance analyses and abdominal fat distribution by magnetic resonance tomography. Subjects were also submitted to fat spectroscopy of liver and oral glucose tolerance testing. In all, 102 subjects completed the diet intervention with measurements of intrahepatic lipid content. Both hypocaloric diets decreased body weight, total body fat, visceral fat, and intrahepatic lipid content. Subjects with high baseline intrahepatic lipids (>5.56%) lost ≈7‐fold more intrahepatic lipids compared with those with low baseline values (<5.56%) irrespective of diet composition. In contrast, changes in visceral fat mass and insulin sensitivity were similar between subgroups, with low and high baseline intrahepatic lipids. Conclusion: A prolonged hypocaloric diet low in carbohydrates and high in fat has the same beneficial effects on intrahepatic lipid accumulation as the traditional low‐fat hypocaloric diet. The decrease in intrahepatic lipids appears to be independent of visceral fat loss and is not tightly coupled with changes in whole body insulin sensitivity during 6 months of an energy restricted diet. (HEPATOLOGY 2011)


The Journal of Clinical Endocrinology and Metabolism | 2009

Dipeptidyl-peptidase-IV inhibition augments postprandial lipid mobilization and oxidation in type 2 diabetic patients.

Michael Boschmann; Stefan Engeli; Kerstin Dobberstein; Petra Budziarek; Anke Strauss; Jana Boehnke; Fred C.G.J. Sweep; Friedrich C. Luft; Yan-Ling He; James E. Foley; Jens Jordan

CONTEXT Dipeptidyl-peptidase-IV (DPP-4) inhibition increases endogenous GLP-1 activity, resulting in improved glycemic control in patients with type 2 diabetes mellitus. The metabolic response may be explained in part by extrapancreatic mechanisms. OBJECTIVE We tested the hypothesis that DPP-4 inhibition with vildagliptin elicits changes in adipose tissue and skeletal muscle metabolism. DESIGN AND SETTING We conducted a randomized, double-blind, crossover study at an academic clinical research center. PATIENTS Twenty patients with type 2 diabetes, body mass index between 28 and 40 kg/m(2), participated. INTERVENTION INTERVENTION included 7 d treatment with the selective DPP-4 inhibitor vildagliptin or placebo and a standardized test meal on d 7. MAIN OUTCOME MEASURES Venous DPP-4 activity, catecholamines, free fatty acids, glycerol, glucose, (pro)insulin, dialysate glucose, lactate, pyruvate, glycerol were measured. RESULTS Fasting and postprandial venous insulin, glucose, glycerol, triglycerides, and free fatty acid concentrations were not different with vildagliptin and with placebo. Vildagliptin augmented the postprandial increase in plasma norepinephrine. Furthermore, vildagliptin increased dialysate glycerol and lactate concentrations in adipose tissue while suppressing dialysate lactate and pyruvate concentration in skeletal muscle. The respiratory quotient increased with meal ingestion but was consistently lower with vildagliptin. CONCLUSIONS Our study is the first to suggest that DPP-4 inhibition augments postprandial lipid mobilization and oxidation. The response may be explained by sympathetic activation rather than a direct effect on metabolic status.


Diabetes | 2008

Atrial Natriuretic Peptide Induces Postprandial Lipid Oxidation in Humans

Andreas L. Birkenfeld; Petra Budziarek; Michael Boschmann; Cedric Moro; Frauke Adams; Gabriele Franke; Michel Berlan; Marie Adeline Marques; Fred C.G.J. Sweep; Friedrich C. Luft; Max Lafontan; Jens Jordan

OBJECTIVE—Atrial natriuretic peptide (ANP) regulates arterial blood pressure. In addition, ANP has recently been shown to promote human adipose tissue lipolysis through cGMP-mediated hormone-sensitive lipase activation. We hypothesized that ANP increases postprandial free fatty acid (FFA) availability and energy expenditure while decreasing arterial blood pressure. RESEARCH DESIGN AND METHODS—We infused human ANP (25 ng · kg−1 · min−1) in 12 men (age 32 ± 0.8 years, BMI 23.3 ± 0.4 kg/m2) before, during, and 2 h after ingestion of a standardized high-fat test meal in a randomized, double-blind, cross-over fashion. Cardiovascular changes were monitored by continuous electrocardiogram and beat-by-beat blood pressure recordings. Metabolism was monitored through venous blood sampling, intramuscular and subcutaneous abdominal adipose tissue microdialysis, and indirect calorimetry. RESULTS—ANP infusion decreased mean arterial blood pressure by 4 mmHg during the postprandial phase (P < 0.01 vs. placebo). At the same time, ANP induced lipolysis systemically (P < 0.05 vs. placebo) and locally in subcutaneous abdominal adipose tissue (P < 0.0001 vs. placebo), leading to a 50% increase in venous glycerol (P < 0.01) and FFA (P < 0.05) concentrations compared with placebo. The increase in FFA availability with ANP was paralleled by a 15% increase in lipid oxidation rates (P < 0.05 vs. placebo), driving a substantial increase in postprandial energy expenditure (P < 0.05 vs. placebo). CONCLUSIONS—Our data identify the ANP system as a novel pathway regulating postprandial lipid oxidation, energy expenditure, and concomitantly arterial blood pressure. The findings could have therapeutic implications.


Circulation | 2002

Paradoxical Effect of Sibutramine on Autonomic Cardiovascular Regulation

Andreas L. Birkenfeld; Christoph Schroeder; Michael Boschmann; Jens Tank; Gabi Franke; Friedrich C. Luft; Italo Biaggioni; Arya M. Sharma; Jens Jordan

Background—Sibutramine, a serotonin and norepinephrine transporter blocker, is widely used as an adjunctive obesity treatment. Norepinephrine reuptake inhibition with sibutramine conceivably could exacerbate arterial hypertension and promote cardiovascular disease. Methods and Results—In 11 healthy subjects (7 men, age 27±2 years, body mass index 23.1±0.7 kg/m2), we compared the effect of sibutramine or matching placebo (ingested 26, 14, and 2 hours before testing) on cardiovascular responses to autonomic reflex tests and to a graded head-up tilt test. In addition, we tested sibutramine in combination with metoprolol. Testing was conducted in a double-blind and crossover fashion. Supine systolic blood pressure was 113±3 mm Hg with placebo, 121±3 mm Hg with sibutramine (P <0.001 versus placebo), and 111±2 mm Hg with the combination of sibutramine and metoprolol. Similarly, sibutramine increased upright blood pressure. Sibutramine substantially increased upright heart rate. This effect was abolished with metoprolol. The blood pressure response to cold pressor and handgrip testing was attenuated with sibutramine compared with placebo. Furthermore, sibutramine decreased low-frequency oscillations of blood pressure and plasma norepinephrine concentrations in the supine position. Conclusions—The cardiovascular effect of the antiobesity drug sibutramine results from a complex interaction of peripheral and central nervous system effects. The inhibitory clonidine-like action of sibutramine on the central nervous system attenuates the peripheral stimulatory effect. Our findings strongly suggest that current concepts regarding the action of sibutramine on the sympathetic nervous system should be reconsidered.


Journal of Hypertension | 2006

Angiotensin type 1 receptor antagonists induce human in-vitro adipogenesis through peroxisome proliferator-activated receptor-gamma activation.

Jürgen Janke; Michael Schupp; Stefan Engeli; Kerstin Gorzelniak; Michael Boschmann; Lilian Sauma; Fredrik Nyström; Jens Jordan; Friedrich C. Luft; Arya M. Sharma

Objective In clonal animal cells, certain angiotensin receptor blockers (ARB) activate the peroxisome proliferator-activated receptor-γ (PPARγ). The aim of this work was to validate that observation in human cells and humans. Methods We investigated the induction of in-vitro adipogenesis and the activation of PPARγ-target genes, adiponectin and lipoprotein lipase, by ARB in human preadipocytes. We also studied PPARγ response-element-driven luciferase reporter gene activation in human adipocytes. Finally, we treated 14 obese men for 10 days with placebo crossed over with 150 mg/day irbesartan. Subcutaneous fat was analyzed for mRNA expression of adiponectin and lipoprotein lipase. Results Telmisartan and irbesartan, and to a lesser degree losartan, induced adipogenesis and activated PPARγ-target genes. This stimulation of PPARγ-target genes was prevented by the PPARγ antagonist GW9662. Eprosartan had no effect. Paradoxically, all ARB activated the luciferase reporter gene. PPARγ activity increased approximately two-fold with pioglitazone and 1.5-fold with the ARB in all assays. In the cross-over clinical study, irbesartan lowered blood pressure but had no effect on adiponectin or lipoprotein lipase mRNA expression. Conclusions Our data are the first to show that ARB induce adipogenesis and PPARγ-target gene expression in human adipocytes. Pharmacokinetic differences may contribute to the heterogeneous effects on metabolism and preadipocyte differentiation. In humans, larger doses of ARB, longer treatments, or both may be required to activate PPARγ in adipose cells.


Nature | 2017

Salt-responsive gut commensal modulates TH17 axis and disease

Nicola Wilck; Mariana Matus; Sean M. Kearney; Scott W. Olesen; Kristoffer Forslund; Hendrik Bartolomaeus; Stefanie Haase; Anja Mähler; András Balogh; Lajos Markó; Olga Vvedenskaya; Friedrich H. Kleiner; Dmitry Tsvetkov; Lars Klug; Paul Igor Costea; Shinichi Sunagawa; Lisa M. Maier; Natalia Rakova; Valentin Schatz; Patrick Neubert; Christian Frätzer; Alexander Krannich; Maik Gollasch; Diana A. Grohme; Beatriz F. Côrte-Real; Roman G. Gerlach; Marijana Basic; Athanasios Typas; Chuan Wu; Jens Titze

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut–immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

Collaboration


Dive into the Michael Boschmann's collaboration.

Top Co-Authors

Avatar

Jens Jordan

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Friedrich C. Luft

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Klaus

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Haufe

Hannover Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge