Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Breakspear is active.

Publication


Featured researches published by Michael Breakspear.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Network structure of cerebral cortex shapes functional connectivity on multiple time scales

Christopher J. Honey; Rolf Kötter; Michael Breakspear; Olaf Sporns

Neuronal dynamics unfolding within the cerebral cortex exhibit complex spatial and temporal patterns even in the absence of external input. Here we use a computational approach in an attempt to relate these features of spontaneous cortical dynamics to the underlying anatomical connectivity. Simulating nonlinear neuronal dynamics on a network that captures the large-scale interregional connections of macaque neocortex, and applying information theoretic measures to identify functional networks, we find structure–function relations at multiple temporal scales. Functional networks recovered from long windows of neural activity (minutes) largely overlap with the underlying structural network. As a result, hubs in these long-run functional networks correspond to structural hubs. In contrast, significant fluctuations in functional topology are observed across the sequence of networks recovered from consecutive shorter (seconds) time windows. The functional centrality of individual nodes varies across time as interregional couplings shift. Furthermore, the transient couplings between brain regions are coordinated in a manner that reveals the existence of two anticorrelated clusters. These clusters are linked by prefrontal and parietal regions that are hub nodes in the underlying structural network. At an even faster time scale (hundreds of milliseconds) we detect individual episodes of interregional phase-locking and find that slow variations in the statistics of these transient episodes, contingent on the underlying anatomical structure, produce the transfer entropy functional connectivity and simulated blood oxygenation level-dependent correlation patterns observed on slower time scales.


PLOS Computational Biology | 2008

The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields

Gustavo Deco; Viktor K. Jirsa; P. A. Robinson; Michael Breakspear; K. J. Friston

The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space–time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and magnetoencephalogram (MEG). Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the physical sciences.


Nature Reviews Neuroscience | 2015

The connectomics of brain disorders

Alex Fornito; Andrew Zalesky; Michael Breakspear

Pathological perturbations of the brain are rarely confined to a single locus; instead, they often spread via axonal pathways to influence other regions. Patterns of such disease propagation are constrained by the extraordinarily complex, yet highly organized, topology of the underlying neural architecture; the so-called connectome. Thus, network organization fundamentally influences brain disease, and a connectomic approach grounded in network science is integral to understanding neuropathology. Here, we consider how brain-network topology shapes neural responses to damage, highlighting key maladaptive processes (such as diaschisis, transneuronal degeneration and dedifferentiation), and the resources (including degeneracy and reserve) and processes (such as compensation) that enable adaptation. We then show how knowledge of network topology allows us not only to describe pathological processes but also to generate predictive models of the spread and functional consequences of brain disease.


Human Brain Mapping | 2009

Small-World Properties of Nonlinear Brain Activity in Schizophrenia

Mikail Rubinov; Stuart Knock; Cornelis J. Stam; Sifis Micheloyannis; Anthony Harris; Leanne M. Williams; Michael Breakspear

A disturbance in the interactions between distributed cortical regions may underlie the cognitive and perceptual dysfunction associated with schizophrenia. In this article, nonlinear measures of cortical interactions and graph‐theoretical metrics of network topography are combined to investigate this schizophrenia “disconnection hypothesis.” This is achieved by analyzing the spatiotemporal structure of resting state scalp EEG data previously acquired from 40 young subjects with a recent first episode of schizophrenia and 40 healthy matched controls. In each subject, a method of mapping the topography of nonlinear interactions between cortical regions was applied to a widely distributed array of these data. The resulting nonlinear correlation matrices were converted to weighted graphs. The path length (a measure of large‐scale network integration), clustering coefficient (a measure of “cliquishness”), and hub structure of these graphs were used as metrics of the underlying brain network activity. The graphs of both groups exhibited high levels of local clustering combined with comparatively short path lengths—features consistent with a “small‐world” topology—as well as the presence of strong, central hubs. The graphs in the schizophrenia group displayed lower clustering and shorter path lengths in comparison to the healthy group. Whilst still “small‐world,” these effects are consistent with a subtle randomization in the underlying network architecture—likely associated with a greater number of links connecting disparate clusters. This randomization may underlie the cognitive disturbances characteristic of schizophrenia. Hum Brain Mapp, 2009.


PLOS Computational Biology | 2009

Modeling the Impact of Lesions in the Human Brain

Jeffrey Alstott; Michael Breakspear; Patric Hagmann; Leila Cammoun; Olaf Sporns

Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous (“resting-state”) neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects may be related to known behavioral and cognitive consequences of brain lesions.


NeuroImage | 2013

Graph analysis of the human connectome: Promise, progress, and pitfalls

Alex Fornito; Andrew Zalesky; Michael Breakspear

The human brain is a complex, interconnected network par excellence. Accurate and informative mapping of this human connectome has become a central goal of neuroscience. At the heart of this endeavor is the notion that brain connectivity can be abstracted to a graph of nodes, representing neural elements (e.g., neurons, brain regions), linked by edges, representing some measure of structural, functional or causal interaction between nodes. Such a representation brings connectomic data into the realm of graph theory, affording a rich repertoire of mathematical tools and concepts that can be used to characterize diverse anatomical and dynamical properties of brain networks. Although this approach has tremendous potential - and has seen rapid uptake in the neuroimaging community - it also has a number of pitfalls and unresolved challenges which can, if not approached with due caution, undermine the explanatory potential of the endeavor. We review these pitfalls, the prevailing solutions to overcome them, and the challenges at the forefront of the field.


NeuroImage | 2008

Nonlinear dynamic causal models for fMRI

Klaas E. Stephan; Lars Kasper; Lee M. Harrison; Jean Daunizeau; Hanneke E. M. den Ouden; Michael Breakspear; K. J. Friston

Models of effective connectivity characterize the influence that neuronal populations exert over each other. Additionally, some approaches, for example Dynamic Causal Modelling (DCM) and variants of Structural Equation Modelling, describe how effective connectivity is modulated by experimental manipulations. Mathematically, both are based on bilinear equations, where the bilinear term models the effect of experimental manipulations on neuronal interactions. The bilinear framework, however, precludes an important aspect of neuronal interactions that has been established with invasive electrophysiological recording studies; i.e., how the connection between two neuronal units is enabled or gated by activity in other units. These gating processes are critical for controlling the gain of neuronal populations and are mediated through interactions between synaptic inputs (e.g. by means of voltage-sensitive ion channels). They represent a key mechanism for various neurobiological processes, including top-down (e.g. attentional) modulation, learning and neuromodulation. This paper presents a nonlinear extension of DCM that models such processes (to second order) at the neuronal population level. In this way, the modulation of network interactions can be assigned to an explicit neuronal population. We present simulations and empirical results that demonstrate the validity and usefulness of this model. Analyses of synthetic data showed that nonlinear and bilinear mechanisms can be distinguished by our extended DCM. When applying the model to empirical fMRI data from a blocked attention to motion paradigm, we found that attention-induced increases in V5 responses could be best explained as a gating of the V1-->V5 connection by activity in posterior parietal cortex. Furthermore, we analysed fMRI data from an event-related binocular rivalry paradigm and found that interactions amongst percept-selective visual areas were modulated by activity in the middle frontal gyrus. In both practical examples, Bayesian model selection favoured the nonlinear models over corresponding bilinear ones.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Time-resolved resting-state brain networks

Andrew Zalesky; Alex Fornito; Luca Cocchi; Leonardo L. Gollo; Michael Breakspear

Significance Large-scale organizational properties of brain networks mapped with functional magnetic resonance imaging have been studied in a time-averaged sense. This is an oversimplification. We demonstrate that brain activity between multiple pairs of spatially distributed regions spontaneously fluctuates in and out of correlation over time in a globally coordinated manner, giving rise to sporadic intervals during which information can be efficiently exchanged between neuronal populations. We argue that dynamic fluctuations in the brain’s organizational properties may minimize metabolic requirements while maintaining the brain in a responsive state. Neuronal dynamics display a complex spatiotemporal structure involving the precise, context-dependent coordination of activation patterns across a large number of spatially distributed regions. Functional magnetic resonance imaging (fMRI) has played a central role in demonstrating the nontrivial spatial and topological structure of these interactions, but thus far has been limited in its capacity to study their temporal evolution. Here, using high-resolution resting-state fMRI data obtained from the Human Connectome Project, we mapped time-resolved functional connectivity across the entire brain at a subsecond resolution with the aim of understanding how nonstationary fluctuations in pairwise interactions between regions relate to large-scale topological properties of the human brain. We report evidence for a consistent set of functional connections that show pronounced fluctuations in their strength over time. The most dynamic connections are intermodular, linking elements from topologically separable subsystems, and localize to known hubs of default mode and fronto-parietal systems. We found that spatially distributed regions spontaneously increased, for brief intervals, the efficiency with which they can transfer information, producing temporary, globally efficient network states. Our findings suggest that brain dynamics give rise to variations in complex network properties over time, possibly achieving a balance between efficient information-processing and metabolic expenditure.


Frontiers in Psychology | 2012

Perceptions as Hypotheses: Saccades as Experiments

K. J. Friston; Rick A. Adams; Laurent Perrinet; Michael Breakspear

If perception corresponds to hypothesis testing (Gregory, 1980); then visual searches might be construed as experiments that generate sensory data. In this work, we explore the idea that saccadic eye movements are optimal experiments, in which data are gathered to test hypotheses or beliefs about how those data are caused. This provides a plausible model of visual search that can be motivated from the basic principles of self-organized behavior: namely, the imperative to minimize the entropy of hidden states of the world and their sensory consequences. This imperative is met if agents sample hidden states of the world efficiently. This efficient sampling of salient information can be derived in a fairly straightforward way, using approximate Bayesian inference and variational free-energy minimization. Simulations of the resulting active inference scheme reproduce sequential eye movements that are reminiscent of empirically observed saccades and provide some counterintuitive insights into the way that sensory evidence is accumulated or assimilated into beliefs about the world.


Human Brain Mapping | 2003

Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects.

Cornelis J. Stam; Michael Breakspear; Anne-Marie van Cappellen van Walsum; Bob W. van Dijk

According to Friston, brain dynamics can be modelled as a large ensemble of coupled nonlinear dynamical subsystems with unstable and transient dynamics. In the present study, two predictions from this model (the existence of nonlinear synchronization between macroscopic field potentials and itinerant nonlinear dynamics) were investigated. The dependence of nonlinearity on the method of measuring brain activity (EEG vs. MEG) was also investigated. Dataset I consisted of 10 MEG recordings in 10 healthy subjects. Dataset II consisted of simultaneously recorded MEG (126 channels) and EEG (19 channels) in 5 healthy subjects. Nonlinear coupling was assessed with the synchronization likelihood S and dynamic itinerancy with the synchronization entropy Hs. Significance was assessed with a bootstrap procedure (“surrogate data testing”), comparing S and Hs with their distribution under the null hypothesis of stationary, linear dynamics. Significant nonlinear synchronization was detected in 14 of 15 subjects. The nonlinear dynamics were associated with a high index of itinerant behaviour. Nonlinear interdependence was significantly more apparent in MEG data than EEG. Synchronous oscillations in MEG and EEG recordings contain a significant nonlinear component that exhibits characteristics of unstable and itinerant behaviour. These findings are in line with Fristons proposal that the brain can be conceived as a large ensemble of coupled nonlinear dynamical subsystems with labile and unstable dynamics. The spatial scale and physical properties of MEG acquisition may increase the sensitivity of the data to underlying nonlinear structure. Hum. Brain Mapping 19:63–78, 2003.

Collaboration


Dive into the Michael Breakspear's collaboration.

Top Co-Authors

Avatar

Gordon Parker

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Tjeerd W. Boonstra

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

James A. Roberts

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Philip B. Mitchell

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Gloria Roberts

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alistair Perry

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew Frankland

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo L. Gollo

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge