Michael Brorsen
Aalborg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Brorsen.
Coastal Engineering | 1987
Michael Brorsen; Jesper Larsen
Abstract The source generation of nonlinear gravity waves in a boundary integral method is reported. Through a number of computational results it is demonstrated that virtually any type of two-dimensional wave field can be generated. It is furthermore shown that scattered waves can pass through the line of generation without significant reflection and that the process of generation is not affected by the scattered waves.
Coastal Engineering | 1995
Peter Frigaard; Michael Brorsen
Abstract A new method for separating an irregular, 2D wave field into incident waves propagating towards a structure and reflected waves propagating away from the structure is presented. The method is based on the use of digital filters and can separate the wave fields in real time. The efficiency of the method is demonstrated through numerical and physical tests. The method is very useful for comparisons of incident waves and structural response in the time domain. Furthermore, the method will be very useful in design of active wave absorbers.
14th International Conference on Coastal Engineering | 1974
Michael Brorsen; Hans F. Burcharth; Torben Larsen
The steady state profile of the longshore current induced by regular, obliquely incident, breaking waves, over a bottom with arbitrary parallel bottom contours, is predicted. A momentum approach is adopted. The wave parameters must be given at a depth outside the surf zone, where the current velocity is very small. The variation of the bottom roughness along the given bottom profile must be prescribed in advance. Depth refraction is included also in the calculation of wave set-down and set-up. Current refraction and rip-currents are excluded. The model includes two new expressions, one for the calculation of the turbulent lateral mixing, and one for the turbulent bottom friction. The term for the bottom friction is non-linear. Rapid convergent numerical algorithms are described for the solution of the governing equations. The predicted current profiles are compared with laboratory experiments and field measurements. For a plane sloping bottom, the influence of different eddy viscosities and constant values of bottom roughness is examined.The calculation of turbulent flow using Naviers equations assumes the introduction of a turbulent viscosity coefficient the value of which is normally constant, conforming with Boussinesqs hypothesis. It was shown that setting aside this hypothesis, a velocity profile quite different to that resulting from the classic theory is obtained in the case of flow induced by wind. This result appears to be confirmed by the tests carried out in the Mediterranean. The advantage of this method is that it gives the vertical turbulent diffusion which is of particular interest to pollution studies.In the numerical method of prediction of wind waves in deep water, Hasselmanns nonlinear interaction theory is applied. This method assumes the energy balance of individual component waves. However, the total energy balance must exist in the transformation of irregular waves in shoaling water. In this investigation, experiments were carried out on the transformations in shoaling water of composite waves having two components and random waves having one or two main peaks. It was found that the elementary component wave height of the composite waves and the elementary peak power of the random waves decrease with decrease in the water depth. This reason can be explained qualitatively by the theory of the elementary component wave height change of finite amplitude waves in shoaling water. The secondary component wave height of the composite waves and the secondary peak power of the random waves increase with decrease in the water depth. This can be explained qualitatively by Hamadas theory of nonlinear interaction in uniform depth.Experiments have been carried out by using non-breaking waves and breaking waves to investigate the wave forces on a vertical circular cell located in the shallow water. Based on the experimental data, the drag coefficient and the inertia coefficient of a circular cylinder and the curling factor of breaking waves are estimated, and the computation methods of wave forces are examined. As a result, it is shown that the phase lag of inertia forces behind the accelerations of water particles should be considered for the estimation of the drag coefficient as well as the inertia coefficient. In addition the previous formula of the maximum breaking wave forces acting on a cell or a pile is revised by introducing the effects of the above-mentioned phase lag and another phase difference, both of which are functions of the ratio of the cell diameter to the wave length. • It is confirmed that the proposed formula is applicable even to the large cell with the diameter comparable to the wave length. INTRODUCTION Many studies have been done on the impulsive pressures acting on a vertical wall, but there has been very little investigation of breaking wave forces on a cell-type structure. The breaking wave forces should be taken into consideration all the same in the design of pile-type or cell-type structures in nearshore area, because breaking waves cause extreme shock pressures on a cell structure asThe air bubble plume induced by the steady release of air into water has been analyzed with an integral technique based on the equations for conservation of mass, momentum and buoyancy. This approach has been widely used to study the behavior of submerged turbulent jets and plumes. The case of air-bubble induced flow, however, includes additional features. In this study the compressibility of the air and the differential velocity between the rising air bubbles ,and the water are introduced as basic propertie s of the air bubble plume in addition to a fundamental coefficient of entrainment and a turbulent Schmidt number characterizing the lateral spreading of the air bubbles. Theoretical solutions for twoand three-dimensional air-bubble systems in homogeneous, stagnant water are presented in both dimensional and normalized form and compared to existing experimental data. The further complication of a stratified environment is briefly discussed since this case is of great practical interest. This paper is to be considered as a progress report, as future experimental verification of various hypotheses is needed.
On the Reflection of Short-Crested Waves in Numerical Models | 1999
Michael Brorsen; Jacob Helm-Petersen
Detailed studies have been undertaken to assist in the design of major extensions to the port of Haifa. Both numerical and physical model studies were done to optimise the mooring conditions vis a vis the harbour approach and entrance layout. The adopted layout deviates from the normal straight approach to the harbour entrance. This layout, together with suitable aids to navigation, was found to be nautically acceptable, and generally better with regard to mooring conditions, on the basis of extensive nautical design studies.Hwa-Lian Harbour is located at the north-eastern coast of Taiwan, where is relatively exposed to the threat of typhoon waves from the Pacific Ocean. In the summer season, harbour resonance caused by typhoon waves which generated at the eastern ocean of the Philippine. In order to obtain a better understanding of the existing problem and find out a feasible solution to improve harbour instability. Typhoon waves measurement, wave characteristics analysis, down-time evaluation for harbour operation, hydraulic model tests are carried out in this program. Under the action of typhoon waves, the wave spectra show that inside the harbors short period energy component has been damped by breakwater, but the long period energy increased by resonance hundred times. The hydraulic model test can reproduce the prototype phenomena successfully. The result of model tests indicate that by constructing a jetty at the harbour entrance or building a short groin at the corner of terminal #25, the long period wave height amplification agitated by typhoon waves can be eliminated about 50%. The width of harbour basin 800m is about one half of wave length in the basin for period 140sec which occurs the maximum wave amplification.Two-stage methodology of shoreline prediction for long coastal segments is presented in the study. About 30-km stretch of seaward coast of the Hel Peninsula was selected for the analysis. In 1st stage the shoreline evolution was assessed ignoring local effects of man-made structures. Those calculations allowed the identification of potentially eroding spots and the explanation of causes of erosion. In 2nd stage a 2-km eroding sub-segment of the Peninsula in the vicinity of existing harbour was thoroughly examined including local man-induced effects. The computations properly reproduced the shoreline evolution along this sub-segment over a long period between 1934 and 1997.In connection with the dredging and reclamation works at the Oresund Link Project between Denmark and Sweden carried out by the Contractor, Oresund Marine Joint Venture (OMJV), an intensive spill monitoring campaign has been performed in order to fulfil the environmental requirements set by the Danish and Swedish Authorities. Spill in this context is defined as the overall amount of suspended sediment originating from dredging and reclamation activities leaving the working zone. The maximum spill limit is set to 5% of the dredged material, which has to be monitored, analysed and calculated within 25% accuracy. Velocity data are measured by means of a broad band ADCP and turbidity data by four OBS probes (output in FTU). The FTUs are converted into sediment content in mg/1 by water samples. The analyses carried out, results in high acceptance levels for the conversion to be implemented as a linear relation which can be forced through the origin. Furthermore analyses verifies that the applied setup with a 4-point turbidity profile is a reasonable approximation to the true turbidity profile. Finally the maximum turbidity is on average located at a distance 30-40% from the seabed.
22nd International Conference on Coastal Engineering ICCE'90, July 1990 | 1991
Michael Brorsen; Henrik I. Bundgaard
Tanah Lot Temple is situated in Tabanan Regency - Bali, on the coast of the Indonesian Ocean. Due to continuous wave attack, wind force, and weathering of the rock bank where the Temple stands, abrasion has occured which is more and more threatening the existence of the Temple. Considering that Tanah Lot Temple is a sacred place for the Hindu Balinese people and a place of high cultural value, and also an important tourism, steps to save the Temple are imperative. The Central as well as the Regional Authorities, and also the Bali nese community are very much interested in the effort to keep the Temple intact. Measures have been undertaken to protect both the seaside and land-side banks of the Temple rock bank. This paper only discusses counter measures of the sea —side bank of the Temple.
Archive | 2007
Michael Brorsen
The 23rd IAHR Congress | 1989
Michael Brorsen
The Fourteenth International Conference on Boundary Element Methods in Engineering | 1992
Michael Brorsen; Peter Frigaard
Archive | 2003
Michael Brorsen; Torben Larsen
Archive | 2007
Tom Andersen; Michael Brorsen